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Genetic architecture of heritable leaf microbes
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ABSTRACT Host-associated microbiomes are shaped by both their environment and 
host genetics, and often impact host performance. The scale of host genetic variation 
important to microbes is largely unknown yet fundamental to the community assembly 
of host-associated microbiomes, with implications for the eco-evolutionary dynamics 
of microbes and hosts. Using Ipomoea hederacea, ivyleaf morning glory, we generated 
matrilines differing in quantitative genetic variation and leaf shape, which is controlled 
by a single Mendelian locus. We then investigated the relative roles of Mendelian 
and quantitative genetic variation in structuring the leaf microbiome and how these 
two sources of genetic variation contributed to microbe heritability. We found that 
despite large effects of the environment, both Mendelian and quantitative genetic host 
variation contribute to microbe heritability and that the cumulative small effect genomic 
differences due to matriline explained as much or more microbial variation than a single 
large effect Mendelian locus. Furthermore, our results are the first to suggest that leaf 
shape itself contributes to variation in the abundances of some phyllosphere microbes.

IMPORTANCE We investigated how host genetic variation affects the assembly of 
Ipomoea hederacea’s natural microbiome. We found that the genetic architecture of 
leaf-associated microbiomes involves both quantitative genetic variation and Mendelian 
traits, with similar contributions to microbe heritability. The existence of Mendelian and 
quantitative genetic variation for host-associated microbes means that plant evolution 
at the leaf shape locus or other quantitative genetic loci has the potential to shape 
microbial abundance and community composition.

KEYWORDS leaf shape, phyllosphere, Ipomoea hederacea, microclimate, host age, leaf 
microbiome, heritability, matriline, Mendelian, quantitative genetics

T he community assembly of microbes on a host depends on the environment, the 
host’s traits, and the microbes (1). Microbes that colonize leaves and other above

ground plant parts, known as the phyllosphere, can disperse to a leaf via air (2), rain (3), 
or soil (4), after which they experience selection due to conditions on the leaf surface and 
microbe-microbe interactions (1, 5). Host genetics play a role in the leaf microbiome: the 
similarity of leaf microbiomes across species depends on host phylogenetic relatedness 
(6, 7), and the similarity of microbiomes between individuals of the same species can 
depend on host intraspecific genetic variation (8–11). Here, we test how a single leaf 
shape gene affects leaf bacterial communities in Ipomoea hederacea and compare the 
magnitude of effects from that single locus to that of many small effect loci.

The genetically based physiological, morphological, or immune traits of hosts can 
lead to consistent associations between the abundance or community composition of 
microbes and host genotypes (12–15). When consistent host-microbe associations are 
present, the host’s microbial phenotype can be considered a heritable host trait, even 
when the microbes are environmentally acquired (16–18). In other words, horizon
tally transmitted microbes can be heritable in host populations when host traits 
have predictable effects on microbial recruitment and alleles for these host traits are 
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transmitted from host parents to host offspring. The heritability of a host’s microbial 
phenotype is important for understanding host evolution and ecology due to microbial 
effects on host fitness (19–21) and potential reciprocal selection between hosts and 
microbiomes (17, 22, 23). The variation in microbe heritability may also have interesting 
evolutionary repercussions for hosts, given that the phenotypic variance of many host 
traits can be microbially mediated (17, 18). Furthermore, if a host’s microbial phenotype 
is due to heritable host genetic variation, the evolutionary forces affecting those host 
traits—selection, drift, mutation, migration, and non-random mating—can in turn affect 
microbial abundances, distributions, and microbiome composition (24). Like all heritable 
traits, host microbial phenotypes can be influenced by a few loci of large effect or the 
cumulative effects of many small effect loci, and understanding microbe heritability 
necessitates determining the scale of host variation that matters to microbes.

Mechanisms producing genotype-specific phyllosphere microbiomes are complex 
and varied. In Arabidopsis thaliana, a genome-wide association study of the phyllosphere 
microbial community found that loci related to defense and plant cell wall integrity affect 
microbial community variation, while species richness was affected by loci involved 
with viral reproduction, trichomes, and morphogenesis (9). Host genotypes may differ 
in immune genes and disease resistance, which have been linked to differences in 
switchgrass leaf fungal community structure (25) and inconsistent effects on bacterial 
and fungal maize phyllospheres (11). Plant genotypes can also vary in leaf morphology 
and other leaf attributes; for example, mutations in cuticle formation and ethylene 
production also affected the microbiome in a synthetic A. thaliana phyllosphere (26). 
The microclimate of a leaf is determined by many leaf properties, including surface 
temperature, surface area, thickness of the boundary layer of air, chemical composition, 
trichomes, gas exchange, and nutrients (27). The boundary layer of air is closest to 
the leaf surface and has warmer, humid air; non-segmented leaves with larger surface 
areas often have a thicker boundary layer, and thicker boundary layers can impede 
gas exchange from the leaves (28). Compounds and water released by leaves during 
gas exchange can be an important source of nutrients and resources for phyllosphere 
microbes (5), and they can impose selection on which microbial species can establish. 
These findings suggest that leaf morphology, and its effects on microclimates and 
resources, can potentially affect phyllosphere microbes.

Factors driving phyllosphere microbiome composition may depend strongly on 
the environment and the interaction between environment and genotype since the 
leaf microbiome is primarily environmentally acquired (29). Environmental factors like 
weather and seasonality influence which microbes are available to disperse to leaves 
and with what frequency (29). Phyllosphere microbes may differ over time due to 
changing moisture and temperature conditions abiotically filtering for microbes in the 
air and soil (30) and biotic interactions that emerge at different times, e.g., changing 
microbe-microbe interactions and new microbes from insects (31) or other plants (32). 
Determining the relative roles of environment, phenology, and plant genotype on the 
microbial community composition and abundance in the phyllosphere is an unresolved 
empirical challenge.

One unstudied potential source of host genotype influence on the leaf microbiome 
is leaf shape. Leaf shape is a key morphological difference between plant species 
(33) and could contribute to interspecific variation in leaf microbiomes. The shape of 
a leaf determines the temperature and humidity conditions it experiences and even 
its photosynthetic and gas exchange abilities (34, 35), potentially affecting microbial 
communities. Comparing the effects of leaf shape on the microbiome between plant 
species is confounded by other genetic and ecological differences between taxa, and for 
this reason, it is preferable to use a single species that exhibits intraspecific variation in 
leaf shape. Ipomoea hederacea, ivyleaf morning glory, is a flowering annual plant whose 
leaf shape is determined by a single Mendelian locus (36–38); homozygous genotypes 
are either fully lobed or whole, with heterozygotes being partially lobed (Fig. 1). In 
I. hederacea, homozygous lobed genotypes have been shown to be more protected 
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against extreme temperature changes compared to whole leaves; homozygous lobed 
leaves remained warmer at night by a mean difference of 0.16°C–0.22°C, likely due 
to their altered boundary layer resulting in leaves being more coupled with ambient 
air temperature (39, 40). The differences in Ipomoea hederacea leaf morphology and 
its effects on temperature and boundary layers that affect leaf microclimates suggest 
that different leaf shape genotypes could directly determine which colonizing microbes 
establish on the leaf, indirectly affecting microbe-microbe interactions and structuring 
leaf microbial communities as a whole.

To assess the relative contributions of quantitative and Mendelian genetic variation, 
we first examined if a single large effect Mendelian locus underlying leaf shape generates 
leaf microbiome differences within a host species. Then, we estimated the heritability 
of microbes due to many small effect loci that differ between plant lines—in other 
words, the amount of microbiome variation attributable to quantitative genetic causes. 
Finally, we compared the relative importance of host genotype to other factors such 

FIG 1 Ipomoea hederacea leaf polymorphism and crossing design. Leaf shape is determined by a single Mendelian locus. First, both homozygous genotypes 

were collected from North Carolina, USA, and selfed for seven generations to create the parents (P1). To generate the plants used in the field experiment, the two 

homozygous P1 individuals were crossed, then heterozygote offspring were selfed for two more generations. Our experiment used F3 plants from 82 matrilines. 

Photos taken by Julia Boyle, with brightness and colors edited for style and clarity.
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as germination time, and therefore host age, to assess the role of the environment in 
structuring leaf microbiomes.

RESULTS

To test the relative contributions of quantitative and Mendelian genetic variation in 
shaping Ipomoea hederacea’s leaf microbiome, we used a breeding design similar to 
that of recombinant inbred lines (Fig. 1). Our crosses created 82 matrilines differing in 
quantitative genetic variation due to recombination. Since the parents of the seeds used 
in the experiment were heterozygous, multiple leaf shape genotypes segregate within 
matrilines. The two temporal cohorts we used reflect the interlinked effects of plant age, 
developmental stage, and exposure to the environment on the leaf microbiome. After 
several months, we collected leaves from the 218 surviving plants and compared how 
germination cohort, leaf shape genotype, and matriline affected their leaf morphology, 
bacterial community, and the heritability of microbes.

Genotype morphology

Leaf shape genotypes of I. hederacea differed quantitatively. Leaf shape genotypes 
differed significantly in measures of circularity [Wald χ2

(2,218) = 1,520, P < 0.001; Table 
S2], with the whole genotype having the highest circularity followed by heterozygotes 
(Fig. S1). While there was a trend for leaf surface area to be the largest in whole leaves 
and lowest in the lobed leaves, the difference was not significantly predicted by leaf 
shape genotype [Wald χ2

(2,218) = 4.15, P > 0.05; Table S2] or germination cohort [Wald 
χ2

(1,218) = 2.22, P > 0.05; Table S2] (Fig. S1). As we specifically chose to sample similarly 
sized leaves, with the intent of minimizing differences in total leaf area, these results 
suggest our sampling strategy worked and that we can attribute differences in microbes 
due to leaf shape as not simply being the result of differences in leaf area.

Community composition and diversity

We first characterized the microbial genera present on leaves and aspects of commun
ity composition and diversity. We considered a “core” microbial genus as one that is 
consistently associated with I. hederacea across temporal cohorts and in over 80% 
of leaves sampled. Across both cohorts, the core I. hederacea leaf microbes were the 
genera Methylobacterium, Sphingomonas, Deinococcus, Pseudomonas, Arthrobacter, and 
Hymenobacter. The older germination cohort had two additional microbial genera at 
above 80% prevalence across samples: Frigoribacterium and Roseomonas. Communities 
were structured by the high relative abundances of Methylobacterium and Sphingomonas 
genera (Fig. 2 and 3), and their relative abundances were negatively correlated (Fig. 
S2). The first principal coordinate analysis (PCoA) axis was strongly positively correlated 
with Methylobacterium relative abundance, while the second axis was strongly negatively 
correlated with Sphingomonas relative abundance (Fig. S2).

Germination cohort was the main driver of the overall microbial community composi
tion. While microbiomes from both cohorts overlapped in composition, they were 
significantly different from each other [F(1,182) = 10.4, P = 0.001; Table S3]; older plants 
from the first cohort had more Methylobacterium, and younger plants from the second 
cohort had more Sphingomonas (Fig. 3A, C, and D). The younger cohort’s microbiomes 
were more distinct from one another, creating significantly higher dispersion [F(1,182) = 
10.4, P = 0.001; Table S3]. Germination cohorts always remained significantly different in 
composition and dispersion when cohort sample sizes were equalized (Fig. S3), suggest
ing this is a true biological phenomenon. Germination cohort significantly predicted 
observed richness [Wald χ2

(1,182) = 10.1, P = 0.001; Table S4], with older plants having 
higher amplicon sequence variant richness than younger plants, but it did not predict 
Shannon diversity [Wald χ2

(1,182) = 3.33, P > 0.05; Table S4] or evenness [Wald χ2
(1,182) = 

2.96, P > 0.05; Table S4].
Despite differences in morphology and microclimate that we a priori predicted to 

affect the leaf microbiome, we did not detect strong leaf shape effects on community 
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composition as a whole. Leaf shape did not significantly structure composition [F(2,182) = 
1.83, P > 0.05; Table S3] or affect Shannon diversity, evenness, or observed richness [Wald 
χ2

(2,182) < 3.97, P > 0.05 for all; Table S4]. While whole community composition was not 
affected, we nonetheless identified microbial genera significantly affected by leaf shape 
in the heritability analysis, as described below.

Co-occurrence network analysis

Microbial networks capture information on microbial recruitment and environmental 
processes (41) and thus are a useful way to visualize (42) and characterize patterns of 
microbe niche similarity (43). To describe these patterns, we created co-occurrence 
networks among microbial genera for each leaf shape genotype and germination cohort. 
Microbial network properties varied between leaf shapes (Table S5). The homozygous 
lobe network had 122 significant correlations and the lowest percentage of positive 
correlations of all the networks, at only 51% (Fig. S4). The heterozygous network had 151 
significant correlations (62% positive; Fig. S5), and the homozygous whole network had 
68 significant correlations (63% positive; Fig. S6). Network modularity indicates distinct 
groupings (i.e., modules) of taxa that are highly correlated among themselves and less 
correlated with taxa in other groupings, while the number of clusters indicates how 
many distinct groupings of taxa were present. Modularity was highest in the homozy
gous whole network at 0.48, compared to 0.41–0.42 for the other genotypes’ networks. 
Networks of leaf shape genotypes contained six to seven clusters. Germination cohorts 
had very similar overall microbial network properties to those of leaf shape; however, 
they formed only three to four clusters (Table S5; Fig. S7 and S8). The main difference 
between cohorts was the global clustering coefficient, which is a measure of how likely it 
is that the nodes correlated to a focal node are also correlated to each other; the older 
cohort had a coefficient of 0.24, while the younger cohort had a coefficient of 0.12. The 
top hub taxa were similar across all networks and tended to include Methylobacterium, 
Sphingomonas, and Arthrobacter (Table S5).

Heritable microbes and community phenotypes

We next tested for genetic variation in microbial traits, first using community phenotypes 
and then the abundance of individual microbes. The community phenotypes tested 
included observed species richness (base 10 log-transformed), evenness, Shannon 
diversity, and the first three axes of the weighted UniFrac PCoA as the response variables 
in individual linear mixed-effects models. We calculated heritability as the ratio of 
matriline genetic variance (VG) to the sum of matriline, spatial block, and residual 

FIG 2 Relative abundance of bacterial families in the Ipomoea hederacea leaf microbiome, indicated by color. Samples are ordered by Sphingomonadaceae 

abundance and grouped by germination cohort. The first germination cohort (A) was 89 days old (n = 83), and the second germination cohort (B) was 61 days 

old (n = 135) at the time of sampling. For this visualization, we included only families in at least 30% of samples and at least 1% relative abundance.
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variance (VP = VG + VBlock + VE). Community phenotypes had low broad-sense heritability 
(0 ≤ H2 ≤ ~0.05) with the third axis of the PCoA having the highest H2, followed by 
Shannon diversity (Fig. 2A). All community phenotypes with non-zero H2 were signifi-
cantly heritable, as the models’ log-likelihoods were improved by including matriline; 
community phenotypes with no H2 (evenness and PCoA axis 2) showed no difference in 
fit when matriline was included (Fig. S9). The main effect of the germination cohort 
significantly affected observed richness, as previously described, as well as the first two 
axes of the PCoA [Wald χ2

(1,182) > 6.71, P < 0.01 for both axes; Table S4], whereas fixed 
effects of leaf shape did not significantly affect community phenotypes [Wald χ2

(2,182) < 
4.85, P > 0.05 for all; Table S4]. In our qualitative comparison of the magnitudes of 

FIG 3 Weighted UniFrac PCoA of I. hederacea leaf microbiomes. Germination cohort significantly predicted community composition (A), while leaf shape was 

non-significant (B). Core microbiota structured communities (C–F). For panels C–F, note that the relative abundance legend scales differ.
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variances explained, plant matriline had a larger effect on community phenotypes’ H2 

than leaf shape, with the exception of observed richness (Fig. 4C; Table S6).
Host genetics had a stronger influence on the abundance of individual microbial 

genera than community phenotypes, with both quantitative genetic and Mendelian 
traits affecting microbe abundance. We considered only genera detected in at least 30% 
of samples and then used their center log-ratio-transformed abundance as responses in 
linear mixed-effects models, calculating heritability as before. We identified eight genera 
with non-zero and significant broad-sense heritability. The most heritable genera (0.05 
≤ H2 ≤0.07) were Nocardioides, Kineococcus, Pseudomonas, and Agrobacterium (Fig. 4B). 
Likelihood ratio tests showed that including plant matriline improved model fit for 10 out 
of 15 genera (which included all genera with non-zero H2); there was no difference in fit 
for three genera (Deinococcus, Hymenobacter, and Sphingomonas) and slightly reduced 
model fit for two genera (Actinotelluria and Rubellimicrobium) (Fig. S9). The germination 
cohort significantly affected the abundance of more than half of the most common 
genera [Wald χ2

(1,218) > 3.83, P < 0.05 for all; Table S7; Fig. 4B]. Four genera, Sphingomo
nas, Nocardioides, Methylobacterium, and Agrobacterium, had significant main effects of 
leaf shape on their phenotype [Wald χ2

(2,218) > 7.03, P < 0.05 for all; Table S7; Fig. 4B]. 
When we examined whether the magnitude of plant matriline variance was qualitatively 
comparable to leaf shape locus, we found that these four genera had equal to larger 
magnitudes of variance attributable to leaf shape than plant matriline (Fig. 4D; Table 
S8). In heritable genera with a non-significant main effect of leaf shape, plant matriline 
explained more variance than leaf shape (Fig. 4D; Table S8), as expected.

DISCUSSION

Microbes can be considered an extended host phenotype with potentially adaptive 
functions for the host (44), and heritable microbes are more likely to consistently 
affect host phenotype and fitness through time. Here, we examined the relative 
contributions of Mendelian and quantitative genetic variation to the heritability of 
host-associated microbes to determine what types of host genetic variation mattered 
to microbial ecology. We found that both Mendelian and quantitative genetic host 
variation contribute to microbe heritability and that the cumulative small effect genomic 
differences due to matriline explained as much or more variation than a single large 
effect locus. We were able to identify heritable microbial variation despite a large 
effect of germination timing, which incorporated host age and the initial microbial 
environment, and was a major factor structuring community composition. We discuss 
the implications of our results below.

Genetic influence on the microbiome

There was genetic variation at several scales mediating how well microbes can estab
lish and perform in the phyllosphere. It is important to note that, as always, our 
estimates of heritability are specific to the population (45) and conditioned on fixed 
effects in the model (46), in our case, the germination cohort and leaf shape. A single 
leaf shape gene significantly explained the abundance of several common microbes 
and altered microbial network properties, suggesting the genetic differences in leaf 
microclimate (39, 40) (or other unknown features of the leaf shape genotypes affecting 
leaf attributes) impact microbial establishment and persistence and can contribute to 
intraspecific differences in the phyllosphere. Genetic differences between matrilines 
impacted microbes and could be related to loci unlinked to leaf shape, such as those 
related to plant immunity, metabolism, hormones, or other physical properties shaping 
the leaf microenvironment (9, 25, 26). When comparing the magnitude of effects, 
both leaf shape and matriline were important factors influencing microbe abundance, 
although plant matriline affected more of the microbes tested. Community phenotypes 
like species diversity and weighted UniFrac distances showed lower heritability than 
individual genera, but since the majority of microbes are not likely to be heritable in an 
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environmentally acquired microbiome, very low heritability at a community scale was 
perhaps unsurprising. Our estimates of heritability are low to commensurate compared 
to other heritable microbiome studies (summarized in Table S9) (10, 12–14, 16, 47–51); 
while the range of heritabilities for plant-associated microbes across other studies was 
as broad as H2 = 0–1, the average significant heritability of microbes and community 
phenotypes was usually low (H2 ≤ 0.10) (Table S9). Our results therefore follow the trend 

FIG 4 Broad-sense heritability (H2) of community phenotypes and common microbial genera. Genera are ordered by percent variance explained by plant 

matriline in the H2 model. (A and B) H2 of community phenotypes and genera in at least 30% of samples. H2 was calculated as the percent variation explained by 

genetic line compared to the total of matriline, spatial block, and residual variances. Significant fixed effects of germination cohort and leaf shape are indicated 

by diamonds and triangles, respectively. (C and D) H2 of community phenotypes and genera in at least 30% of samples, but with leaf shape as a random effect to 

directly compare the magnitude of variance explained to that of matriline.
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of low heritability for environmentally acquired microbes, with a strong influence of the 
environment.

In our experiment, each plant line represented a different mosaic of the original 
parental genotypes, similar in concept to recombinant inbred lines (RILs). However, 
because the seeds we used in our experiment were F3 individuals, approximately 
25% of the loci initially heterozygous in the F1 (i.e., those that differed between the 
parents) remain heterozygous within matrilines. One consequence of this is that there 
is genetic variation between matrilines due to the effects of recombination and genetic 
variation within matrilines (due to heterozygosity and segregation within a matriline). 
These effects make it more difficult to detect quantitative genetic variation in microbial 
phenotypes, especially compared to RIL populations that have been made homozygous 
within lines. Our results may thus underestimate the prevalence and magnitude of H2 

due to reduced power. Furthermore, our crossing design included only two parental 
genotypes, potentially limiting the amount of genetic variation segregating in the cross. 
For instance, had we sampled more genotypes to create MAGIC or nested association 
mapping lines (52, 53), more genetic variation would have been captured in our 
population. It is difficult to determine, a priori, whether this would lead to increased or 
decreased estimates of genetic variation. On the one hand, two parental genotypes are a 
limited sample of the genetic variation found in many populations. Although putatively 
neutral genetic variation in I. hederacea populations is often quite low (54), there is 
frequently quantitative genetic variation (55, 56). On the other hand, the selfing rate in 
I. hederacea is quite high (~93%) (54, 57). As such, rare outcrossing events, followed by 
selfing, may produce recombinant populations not that dissimilar from our experimen
tal population. Similar arguments have been made for A. thaliana (58, 59), which is 
also highly selfing. As a qualitative investigation of the influence of including limited 
genetic variation in our crossing design, we gathered estimates of H2 for life history 
and quantitative traits in Arabidopsis thaliana, specifically comparing studies that used 
either multiple accessions or RILs. These data (Table S10), while an imperfect comparison, 
suggest that if anything, our estimates of heritability could be under-estimated by using 
two parental lines in the initial cross.

Evolutionary implications

We found similar magnitudes of variance in microbial phenotypes attributable to plant 
line and leaf shape genotype for several common bacterial genera, which is important 
because there is the potential for different evolutionary forces to act on quantitative 
genetic loci versus Mendelian loci. For example, Mendelian traits like leaf shape have 
a high potential to show sampling effects due to drift, especially in small populations 
(60). In contrast, drift is much less likely to produce a change in quantitative traits, which 
are influenced by many genes (60). Thus, drift can potentially lead to bigger effects on 
leaf-shape-associated microbes. Furthermore, high selfing in I. hederacea will reduce the 
frequency of heterozygous leaf shape genotypes by as much as 50% per generation. In 
this way, the mating system may have outsized effects on microbes linked to Mendelian 
traits. If natural selection acts on host traits, as it appears to with I. hederacea’s leaf shape 
(38), there may be indirect effects of selection on the microbial phenotype in the host 
population.

The microbes we identified as having heritable variation in abundance are also linked 
to host performance and fitness in other systems. These findings from other systems 
suggest intriguing hypotheses for further study. For example, one of the most heritable 
genera that was also significantly affected by leaf shape, Agrobacterium, has pathogens 
linked to causing tumor-like galls in plants (61), suggesting a potential link between leaf 
shape and disease risk. Methylobacterium spp. are linked to improving plant growth (62), 
and increased growth rate improves fitness in I. hederacea (39). Pseudomonas spp. have a 
wide range of positive or negative effects on plant performance (63). The most heritable 
genus Nocardioides is commonly endophytic on plant leaves and stems (64, 65) and has 
species capable of fixing nitrogen (66) and reducing nitrate (67). Evaluating whether any 
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of these microbial genera that have effects on host performance in other systems do 
so in I. hederacea will require further empirical work. If heritable microbes affect plant 
fitness, then there is a higher potential for reciprocal selection between the microbes and 
plant hosts.

Environmental and phenological effects on the leaf microbiome

Community-wide differences between germination cohorts could be due to seasonal 
differences in what microbes were present in the plant’s early life and the amount of 
time selection had to act on the microbial communities. The input of new microbes 
to the phyllosphere can be low relative to environments like soil rhizospheres, and 
these sources may change across the growing season (29). The cumulative input of 
microbes may matter as well since we found that the older plant phyllospheres had 
a higher species richness than younger plants; this is possibly because the leaves 
themselves were older and had more time to collect rare microbes dispersing from the 
environment. Additionally, as plants age and change phenologically, this may change 
the leaf environment for microbes (68–70). While in a time of growth and development, 
young plants have weaker immune responses (71), meaning they may impose weaker 
selection on their phyllospheres. Thus, the disparate microbiomes on young plants could 
be due to weaker selection from the environment and host over a shorter time. In 
contrast, older plants showed more similar and clustered microbiomes, suggesting that 
over time there is selection on microbes by the I. hederacea leaf microclimate, and the 
microbial community converges. The merging community compositions between young 
and old plants could suggest microbial succession occurred in the phyllosphere (72, 73). 
Early-season leaf microbiomes can be more influenced by soil microbes and become 
increasingly specific to the host plant over time (73); the core and highly abundant 
microbial genera in our samples are very common phyllosphere microbes (61–64, 73, 74), 
and thus do not suggest an outsized input of soil microbes.

The large effect of the germination cohort is not unexpected, given that most studies 
on microbiome heritability find a very large effect of environment and host age on 
the microbiome (10, 12, 16, 75). For example, Walters et al. (16) found that plant age 
was the largest driver of the maize rhizosphere, but in 1 year, they nonetheless found 
143 heritable root microbes with H2 = 0.15–0.25. While our results suggest genera 
like Methylobacterium and Sphingomonas were significantly affected by host age and 
initial microbial environment, host genotype still significantly mediated these environ
mental and phenological changes in microbe abundance. Our results add to recent 
evidence that the assembly process of host-associated microbiomes is governed by both 
stochastic forces and host-based selective forces (75, 76).

Conclusions

Our results show that while I. hederacea leaf microbe composition differences were 
primarily shaped by host age and the environment, there exists a heritable subset 
of core microbes in the I. hederacea microbiome. A Mendelian trait and quantitative 
genetic variation across matrilines explained similar amounts of variation in microbial 
abundance, with implications for plant-microbe eco-evolutionary dynamics across time. 
Furthermore, we show for the first time that leaf shape itself may contribute to differen-
ces in phyllosphere microbial abundances within a species.

MATERIALS AND METHODS

Study system and crossing design

Ipomoea hederacea, ivyleaf morning glory, is a flowering annual plant, commonly found 
in eastern North America in roadside ditches and agricultural fields. It is predominantly 
selfing (77) and dies with the first hard frost in autumn. We used seeds derived from 
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a cross by Campitelli and Stinchcombe (39), where individuals from the two alternate 
homozygous leaf shape phenotypes (i.e., fully lobed or whole) were collected from North 
Carolina, USA, selfed for seven generations to generate homozygous parents (P1), and 
then crossed with each other (Fig. 1). A single F1 was allowed to self-fertilize, producing 
F2 progeny. We scored F2 plants for leaf shape and allowed them to self-fertilize; we refer 
to all the selfed progenies of an individual F2 plant as a “matriline.” We used F3 seeds, set 
by F2 plants we had identified as heterozygous for leaf shape, as our experimental seeds. 
In total, we used seeds from 82 matrilines. As expected, genotype frequencies did not 
significantly differ from a 1:2:1 ratio for leaf shape [χ2 (2, 218) = 3, P = 0.22], with 55 plants 
with whole leaves, 112 plants with partially lobed leaves, and 51 plants with fully lobed 
leaves.

Our breeding design has three consequences for leaf microbiomes, which we address 
in the Discussion. First, variation between matrilines is due to the combined effects of 
loci that differed between the original parents of the cross and the effects of recombina
tion. Second, because of the effects of recombination, significant differences between 
leaf shape genotypes are due to either the effects of the leaf shape locus itself or linked 
loci not broken up by recombination. Third, within a matriline, we expect 25% of the loci 
that differed between the parents to still be heterozygous, which is considerably more 
within-matriline genetic variation than would be found in inbred lines or RILs, potentially 
reducing our power and making our estimates of microbe heritability more conservative.

Field site and experimental design

In 2021, we planted a total of 240 I. hederacea seeds from 82 matrilines (2–3 seeds/
matriline) in a common garden at Koffler Scientific Reserve (https://ksr.utoronto.ca/) in 
Ontario, Canada. We scarified seeds, then planted them in a greenhouse in peat pots 
containing soil from the field. We planted the first cohort on 4 June and a second cohort 
on 2 July, because of poor germination in the first cohort. After the majority of plants in a 
given cohort germinated (approximately 1 week), we transplanted the pots into the field. 
We plowed and disked an old field for the common garden site and placed plants 1 m 
apart with a 6 ft tall bamboo pole to climb. We used three spatial blocks in the field, with 
one replicate per matriline found within each spatial block; within blocks, we randomly 
assigned positions of each matriline. The common garden was moderately weeded until 
the I. hederacea plants had established; neighboring plants in the common garden were 
predominantly Cirsium arvense, Canada thistle. The 218 surviving plants consisted of 83 
individuals from the first cohort and 135 individuals from the second cohort. There were 
no significant differences in the frequencies of leaf shape genotypes between the two 
cohorts [χ2 (2, 218) = 0.31, P = 0.86; Table S1]. On 1 September, we collected one leaf 
within 1 foot from the ground from each plant by cutting the petiole with sterilized 
scissors into a sterile plastic bag, after which leaves were stored in a −80°C freezer until 
DNA extraction. We avoided collecting atypical leaves, for example, leaves with herbivory 
damage, sun damage, small and large leaves, or leaves that looked unusually dirty. The 
soil is a known contributor to leaf microbiomes (4, 73), and while it is likely that soil 
microbes interacted with the leaf surface through rain and wind, we expect that our 
collection methods led to a predominance of leaf microbes. At the time of leaf collection, 
plants in the first germination cohort were 89 days old with 96% of plants flowering, 
and plants in the second germination cohort were 61 days old with 49% of plants 
flowering. As a consequence, the second cohort of plants were younger, experienced 
field conditions for fewer days, and were developmentally younger. We photographed 
collected leaves against a 1 cm2 grid background and measured leaf surface area and 
shape using ImageJ (78). From these photographs, we calculated leaf circularity as 4π 
(area/perimeter2), which has a value between 0 and 1, with 1 indicating a perfect circle.
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Sequencing and QIIME2 analysis

We performed extractions using the whole leaves with QIAGEN DNeasy PowerSoil Pro 
Kits; both epiphytic and endophytic microbes were extracted. We sent samples to 
Génome Québec (Montréal, Canada) for Illumina MiSeq PE 250 bp 16S rRNA gene 
amplicon sequencing on the conserved hypervariable V4 region (primer pair 515F-806R). 
We used Quantitative Insights Into Microbial Ecology 2 (QIIME2) v.2022.2 (79) to trim the 
sequences for quality, and we denoised the sequences with DADA2 (80). Samples had a 
median read frequency of 35,436 reads. Using QIIME2, we removed amplicon sequence 
variants (ASVs) that had fewer than 10 reads across all samples and assigned taxonomy 
using the “sklearn” feature classifier and Greengenes 16S rRNA gene V4 region reference 
(81), then filtered out reads assigned as cyanobacteria and mitochondria to remove plant 
DNA. After these steps, we had 4,934 ASVs across the 218 leaf samples, with samples 
having a median read frequency of 4,523 reads. After visualizing a rarefaction curve, we 
created a rarefied data set with 4,695 ASVs total across 183 samples, with 1,809 reads/
sample; the first and second cohorts retained 77 and 106 samples, respectively. Finally, 
we constructed a phylogeny using QIIME2’s MAFFT (82) and FastTree 2 (83) to obtain a 
rooted tree.

Statistical analysis

For statistical analysis, we used R v4.2.0 (84), with the tidyverse (85), lmerTest (86), 
phyloseq (87), vegan (88), and microbiome (89) packages. The general model structure 
we used included leaf shape genotype and germination cohort as fixed effects and 
random effects of block and matriline unless otherwise specified. All linear models were 
adjusted with type III ANOVAs, calculated in the car package (90).

First, we compared leaf shape surface area and circularity between genotypes using 
linear mixed-effects models. Next, we identified the core microbes by filtering the 
rarefied data set to genera found in at least 80% of samples across both cohorts. We 
also compared genera that passed this 80% prevalence threshold in each germination 
cohort separately. To assess the effect of leaf shape and germination cohort on microbial 
composition, we calculated a weighted UniFrac distance matrix using rarefied data, then 
we used an adonis2 PERMANOVA (999 permutations) followed by a permutational test of 
dispersion on significant groups using betadisper. The vegan package does not allow for 
random effects, so we did not include block and matriline. To confirm that germination 
cohort sample sizes did not affect our results, we also downsampled to equal cohort 
sizes 100 times and used the same permutation tests for composition and dispersion 
(Fig. S3). To visualize the community, we used a weighted UniFrac principal coordinate 
analysis using rarefied relative abundance data. We created microbial co-occurrence 
networks at the genus level for each leaf shape genotype and germination cohort. Using 
SparCC and sparccboot implemented through the SpiecEasi package (91), we permuted 
the correlations 100 times to generate a null expectation, then calculated false-discov
ery rate adjusted P values for microbial pairs. Using the networks of only significantly 
correlated genera, we then calculated modularity, Kleinburg’s hub centrality scores, and 
the global clustering coefficient.

We estimated broad-sense heritability (H2) of microbial community phenotypes and 
taxonomic groups using linear mixed-effects models, taking a similar approach as 
Wagner et al. (10) and Grieneisen et al. (14). Here, the random effects of block and 
matriline explain variance in the microbe abundance phenotype after accounting for 
the mean effects of the germination cohort and leaf shape, meaning our estimates 
of H2 are conditioned on the fixed effects of the germination cohort and leaf shape 
(as is commonly the case [46]). To estimate H2 from the random effects, we calculated 
the ratio of matriline genetic variance (VG) to the sum of matriline, spatial block, and 
residual variance (VP = VG + VBlock + VE). We generated the community phenotypes 
using rarefied data and included observed species richness (base 10 log-transformed), 
evenness, Shannon diversity, and the first three axes of the weighted UniFrac PCoA as the 
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response variables in individual linear mixed-effects models. To estimate the heritability 
of taxonomic groups in a more compositionally aware way (92), we aggregated the 
non-rarefied data set to genera that were in at least 30% of samples, added one to 
each abundance, and center log-ratio transformed the abundance matrix. Next, we fit a 
linear mixed-effects model to the abundance of each genus that was in at least 30% of 
samples. To assess the statistical significance of the matriline effect, we compared the 
log-likelihood of our models with and without line as a random effect; the difference in 
log-likelihoods is χ2 distributed, with one degree of freedom (93). Finally, solely for the 
purposes of a qualitative comparison of the magnitude of variance explained by the leaf 
shape locus, matriline effects, spatial blocks, and residual variation, we used the same 
mixed-effects model except with leaf shape as a random effect. The data sets analyzed 
during the current study are available in the Dryad repository, https://doi.org/10.5061/
dryad.rbnzs7hjz.
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