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Abstract 
The multivariate evolution of populations is the result of the interactions between natural selection, drift, and the underlying genetic structure 
of the traits involved. Covariances among traits bias responses to selection, and the multivariate axis which describes the greatest genetic vari-
ation is expected to be aligned with patterns of divergence across populations. An exception to this expectation is when selection acts on trait 
combinations lacking genetic variance, which limits evolutionary change. Here we used a common garden field experiment of individuals from 
57 populations of Ipomoea hederacea to characterize linear and nonlinear selection on 5 quantitative traits in the field. We then formally compare 
patterns of selection to previous estimates of within population genetic covariance structure (the G-matrix) and population divergence in these 
traits. We found that selection is poorly aligned with previous estimates of genetic covariance structure and population divergence. In addition, 
the trait combinations favored by selection were generally lacking genetic variation, possessing approximately 15%–30% as much genetic vari-
ation as the most variable combination of traits. Our results suggest that patterns of population divergence are likely the result of the interplay 
between adaptive responses, correlated responses, and selection favoring traits lacking genetic variation.
Keywords: adaptation, genetic variation, natural selection, quantitative genetics

Introduction
Understanding how populations change through time and 
space is a central goal of evolutionary biology. The strength 
and form of natural selection varies across landscapes and 
over time can lead to divergence among populations due 
to local adaptation (Endler, 1977; Linhart & Grant, 1996). 
While divergence among habitats or across gradients is often 
interpreted as adaptive (cf. Vasemägi, 2006), natural selection 
acts in conjunction with other evolutionary forces such as ge-
netic drift, which can contribute to divergence, and gene flow, 
which can act as a homogenizing force. The amount of genetic 
variation that exists within a population, and how that vari-
ation is organized among traits also influences how adaptive 
divergence proceeds (Falconer & Mackay, 1996; Lande & 
Arnold, 1983; Walsh & Blows, 2009). The response to selec-
tion will depend on both natural selection acting on a popula-
tion along with the variation within traits and the covariances 
among them (Antonovics, 1976; Blows & Hoffmann, 2005; 
Lande & Arnold, 1983; Walsh & Blows, 2009). Here we mea-
sure natural selection in the field on five quantitative traits 
and compare selection with estimates of clinal divergence and 
genetic covariances between traits, to formally evaluate the 
roles of selection and trait covariation in divergence.

The G-matrix (Lande, 1979) summarizes the genetic vari-
ances and covariances among traits, with the genetic varianc-
es of traits along the diagonal of the matrix and covariances 

among those traits on the off-diagonals. Over short time 
scales G may bias response to selection of a population, there-
by reducing the potential increase in fitness, if the direction of 
selection is not aligned with the major axes of variation in G 
(Schluter, 1996; Walsh & Blows, 2009). Additionally, the axis 
of greatest genetic variation, gmax, is expected to be aligned 
with divergence among populations, as this axis biases the 
response to selection toward itself due to trait covariances 
(Schluter, 1996), and via drift which also generates divergence 
along gmax (Arnold et al., 2001; Lande, 1979; Phillips et al., 
2001). While absolute evolutionary constraints, where no 
evolutionary response to selection is possible due to the com-
plete absence of genetic variation, are unlikely, any constraint 
due to the geometry of G will slow the evolutionary response 
to selection. In cases where rapid evolutionary response is re-
quired such as during range expansion or in the face of cli-
mate change, populations may be at risk of extinction (Walsh 
& Blows, 2009).

Ipomoea hederacea (ivyleaf morning glory), a weedy annu-
al plant with an eastern range which stretches from approx-
imately southern Pennsylvania and New Jersey through to 
Mexico, and has likely undergone evolutionarily recent, rap-
id range expansion (Campitelli & Stinchcombe, 2014). The 
extent to which I. hederacea’s range in United States is due 
to a very recent invasion is contested, but herbaria records 
indicate it has persisted in its current range since at least the 
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1800’s (Bright-Emlen 1998). Ipomoea hederacea has genetic 
clines in both leaf shape, a Mendelian trait (Bright & Rausher, 
2008; Campitelli & Stinchcombe, 2013a), and quantitative 
traits such as flowering time (Simonsen & Stinchcombe, 
2010; Stock et al., 2014). Stock et al. (2014) investigated 
latitudinal divergence among a suite of life history and mor-
phological traits. They characterized the multivariate genetic 
divergence among populations and the multivariate genetic 
divergence with respect to latitude. Henry and Stinchcombe 
(2023) estimated G-matrices of four populations of I. heder-
acea, two from the northern-edge of the range and two from 
the core of the range, for the same suite of traits as Stock 
et al. (2014). Contrary to their expectations, they found no 
alignment between the population’s gmax and the axis of latitu-
dinal multivariate divergence (clinemax). These results suggest-
ed that strong selection has acted in a direction unaligned or 
orthogonal with G, leading to a lack of alignment between G, 
divergence, and selection. Alternatively, the observed lack of 
alignment may simply be due to unmeasured correlated traits 
having experienced selection, and the observed response be-
ing driven by the unmeasured traits (Lande & Arnold, 1983).

To evaluate the relative roles of selection and potential cor-
related responses to selection in leading to divergence across 
I. hederacea’s range, we estimated selection in the field on a 
broad representation of populations. We grew I. hederacea 
plants from 57 populations from across its eastern North 
American distribution in the field, at the Koffler Scientific 
Reserve, King, Ontario. We estimated selection on five quanti-
tative traits which capture aspects of growth and size, phenol-
ogy, and reproductive biology. Specifically, we asked: (a) Are 
estimates of directional and nonlinear selection correlated 
with previous estimates of G (Henry & Stinchcombe, 2023) 
and divergence (Stock et al., 2014)? (b) How much genetic 
variance is there in the combination of traits under selection? 
(c) Will patterns of trait variation and covariation reflected in 
G facilitate or constrain adaptation in northern populations 
of I. hederacea, thus potentially facilitating or constraining 
range expansion?

Our analyses necessarily combine data from different ex-
perimental environments: a field study (reported here) and 
two separate greenhouse common garden experiments (Henry 
& Stinchcombe, 2023; Stock et al., 2014), which also differed 
in the number of populations and within-population samples. 
It is well known that the expression of phenotypic and genet-
ic variation can vary by environment (e.g., Wood & Brodie, 
2015). Thus, we performed Krzanowski’s subspace analysis 
(Krzanowski, 1979; following Aguirre et al., 2014) on the 
phenotypic variance–covariance matrices for northern and 
southern groups from the three experiments to evaluate the 
level of similarity between the phenotypic variation expressed 
across these experiments. We found overwhelming similarity 
among patterns of phenotypic covariation in all three exper-
iments, strengthening our confidence that combining the re-
sults of these studies would yield a useful understanding of 
genetic variation, divergence, and selection in this system.

Materials and methods
Study species and natural history
Ipomoea hederacea (Convolvulaceae) is an annual vine 
found in disturbed habitats such as agricultural fields and 
roadsides in eastern United States, with a range that extends 

to southern Pennsylvania and mid-state New Jersey, USA. 
Plants germinate in early summer and grow and flower until 
a frost ends the growing season. Despite producing showy 
flowers, selfing rates are high (92%–94%, Campitelli & 
Stinchcombe, 2014).

Quantitative genetic and field experimental design
We used replicate seeds, set by self-fertilization in a common 
greenhouse environment, of 343 maternal lines. Maternal 
lines were derived from 57 populations (1–10 lines per popu-
lation, median = 6), gathered from 10 states in I. hederacea’s 
eastern North American distribution, spanning ~7° of latitude 
(33.017681° to 40.340767° N). We specifically chose lines 
to increase overlap of previous studies of latitudinal diver-
gence (Campitelli & Stinchcombe, 2013a; Stock et al., 2014) 
and G-matrices within populations (Henry & Stinchcombe, 
2023), and measured the same phenotypes to maximize 
comparability across studies. We used 303 lines gathered by 
Campitelli and Stinchcombe (2013a), from which we selected 
lines that had sufficient seeds, and to maximize geographic lo-
calities. To this, we added 40 maternal lines, randomly chosen 
from Henry and Stinchcombe’s (2023) collections that had 
sufficient seeds. We note that Stock et al. (2014) also studied 
a subset of Campitelli and Stinchcombe (2013a) lines, and 
that our sample includes 19 of the 20 populations studied by 
Stock et al. (2014).

On July 20, 2021, we sowed 1,024 scarified seeds from 
these maternal lines (339 lines with 3 seeds per line, 3 lines 
with 2 seeds per line, and 1 line with 1 seed) into 4″ peat pots 
filled with Pro-Mix BX mycorrhizae soil in a glasshouse at 
ambient temperature and light. We transplanted pots into a 
recently ploughed old field three days later, with pots placed 
into the ground flush with field soil. We used a randomized 
block design of three spatial blocks in the old field (one rep-
licate per line per block) and 1-meter grid spacing between 
individuals. We watered individuals thoroughly on the day 
they were transplanted into the ground but provided no fur-
ther water supplementation. Approximately 90% of seeds 
germinated (917 of 1,024), and plants were left unstaked and 
allowed to grow naturally among colonizing weeds, which in-
cluded Amaranthus palmeri, several Brassica spp., Ambrosia 
artemisiifolia, and Capsella bursa-pastoris, among others.

Phenotypic measurements
We measured a suite of size, phenology, and floral architecture 
traits that had been studied in prior investigations (Henry & 
Stinchcombe, 2023; Stock et al., 2014): individual seed mass 
(g), early growth rate (leaves/day), days to onset of flower-
ing (number of days after sowing), corolla width (mm), and 
anther–stigma distance (mm). We measured each individual’s 
seed mass prior to sowing. We calculated early growth rate 
as the difference in leaf number on two separate days divided 
by the number of intervening days. We performed our first 
leaf count survey when most plants had produced true leaves 
(22 days after sowing) and performed the second leaf count 
survey 12 days later. We conducted daily surveys to record 
the day on which each plant opened its first flower, which we 
used to measure corolla width and anther–stigma distance. 
We measured corolla width and anther–stigma distance using 
digital calipers (precision: ±0.02 mm). We measured the dis-
tance from the lowest and highest anthers to the stigma and 
calculated the mean of the absolute distance to characterize 
anther–stigma distance.
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We allowed individuals to grow, flower, set seed, and se-
nesce naturally in the field. We collected the above-ground 
tissue four days after we observed widespread frost damage, 
when weather conditions were dry, on 27 October 2021. Of 
the 1,024 individuals sown at the beginning of the experi-
ment, 650 had flowered by the end of the experiment, and 
190 had set seeds. We counted the number of seeds produced 
from each individual, if any. We used the total seed set num-
ber as our estimate of fitness.

Subspace analysis
One feature of our analyses is that they combine data from 
different experimental environments: a field study in a freshly 
ploughed field, and two separate greenhouse common garden 
experiments. Further, these studies differed in the number of 
populations sampled (4, 20, and 57), within-population repli-
cation of lines (50, 10, and ~6), and total sample sizes (2,137, 
1,467, and 650, for Henry & Stinchcombe, 2023; Stock et 
al., 2014, and this study, respectively). To evaluate the sim-
ilarity between the variation expressed across these experi-
ments, we performed subspace analysis (Krzanowski, 1979; 
following Aguirre et al., 2014) on the phenotypic variance–
covariance matrices for northern and southern groups from 
the three experiments. We used >38°N and <36°N to charac-
terize Northern and Southern populations, respectively (for 6 
P-matrices total), as there were no populations sampled be-
tween 36 and 38°N. We used P-matrices because of the differ-
ences in quantitative genetic design and to maximize power. 
We then performed the subspace analysis for the P-matrices 
across all three experiments within each region and used the 
number of dimensions which explained at least 90% of the 
variation in the populations to construct the population sub-
spaces, as per Aguirre et al. (2014).

Analysis of natural selection
We standardized explanatory variables to have x̄ = 0 and σ 
= 1, which allowed us to compare the strength of selection 
acting on traits with different units (leaves/day, days, mm, 
etc.) and to compare the selection gradient directly with 
the G-matrices from Henry and Stinchcombe (2023) which 
were also estimated using standardized data. We divided the 
number of seeds set by each individual by the grand mean 
total seed set to calculate relative fitness; individuals which 
flowered, but did not set seed, had a relative fitness = 0, and 
were included in the analyses. Given the high selfing rates in 
this species (>90%, Campitelli & Stinchcombe, 2014; Ennos, 
1981), our use of seed set as a measure of fitness likely re-
flects both female and male fitness components, although any 
outcrossing in our experiment will reduce how much seed 
set reflects male fitness. To estimate selection on these traits 
we regressed relative fitness on our five traits using the lme 
function from the nlme package (Pinheiro et al., 2022) and 
included maternal line and field block as random effects to 
account for the non-independence of individuals of the same 
maternal line and environmental heterogeneity. We first esti-
mated directional selection, β, with all traits. To ensure that 
multicollinearity was not unduly affecting our estimates of 
selection (Chong et al., 2018; Mitchell-Olds & Shaw, 1987), 
we calculated the variance inflation factor (VIF), which gives 
the amount of variance inflation in the model term due to 
multicollinearity with other model terms compared to a 
model without. While no clear boundaries exist for VIFs, val-
ues above 1 suggest some degree of correlation, and values 

above 5 are generally agreed to indicate a concerning level 
of multicollinearity (James et al., 2021; Menard, 2002). We 
determined that no traits had a concerning degree of multi-
collinearity, as all traits had VIF values below 2 (Table S1). 
Thus, we retained all traits in the selection model. We also 
explored estimating selection on line means (Rausher, 1992; 
Stinchcombe et al., 2002); we found very similar patterns of 
directional selection gradients, and as such present those in 
the Supplemental Material (Table S2) and focus on phenotyp-
ic estimates, while accounting for block and maternal line in 
the main text.

To estimate nonlinear selection, we included quadrat-
ic terms and pairwise interactions of each trait. We multi-
plied the quadratic terms by a factor of 2, and constructed γ 
(Stinchcombe et al., 2008). To further aid in interpretation of 
the multivariate nonlinear selection gradient we performed 
canonical rotation of the axes (Phillips & Arnold, 1989) and 
assessed significance of nonlinear selection via double-regres-
sion permutation testing (Reynolds et al., 2010), which incor-
porated sampling error in the null distribution. We then fit a 
thin plate spline using the fields package (Nychka et al., 2021) 
to the canonically rotated axes for visual interpretation.

Combining estimates of β, γ, G, and divergence
We next used our field estimates of β to evaluate patterns of 
constraint and divergence, taking advantage of past studies 
using this species. First, we compared our field estimate of 
β to the axis of greatest latitudinal multivariate divergence 
described by Stock et al. (2014) to quantitatively test the hy-
pothesis that there is a relationship between natural selection 
on these traits and their geographic divergence. Stock et al. 
(2014) measured the same phenotypes in a greenhouse com-
mon garden experiment; we used their original data to re-es-
timate latitudinal divergence on the x̄ = 0 and σ = 1 scale. We 
used Pearson’s correlation coefficient to evaluate whether our 
estimated directional selection gradient and the axis of latitu-
dinal multivariate divergence (Clinemax) from their experiment 
were correlated with one another.

Second, we compared our estimates of β and γ to the 
G-matrices of four populations studied by Henry and 
Stinchcombe (2023), again in a common greenhouse envi-
ronment. To do so, we examined the correlation between 
our estimated directional selection gradient and the axis of 
greatest variation (PC1, or gmax) of each population and the 
correlation between β and the second eigenvector of the Gs, 
g2, which describes the axis of second most variation. We also 
calculated the amount of genetic variation in the direction of 
selection, by projecting our estimates of β through each of 
the population G-matrices (βTGβ). To account for differences 
in size of the G-matrices, we standardized the projection by 
the eigenvalue of gmax, such that a value of 1 would indicate 
that there is as much genetic variation in β, as gmax, the axis of 
greatest variation. As Henry and Stinchcombe (2023) used a 
Bayesian approach to estimate G we calculated all of the met-
rics described above for all posterior samples, and we report 
95% Highest Posterior Density (HPD) intervals along with 
the mean values. We repeated this technique for the first two 
principal components of γ, m1 and m2, the axes of greatest 
nonlinear selection.

Third, we used our field estimates of β and γ to determine 
how much the genetic covariances described by Henry and 
Stinchcombe (2023) slow the rate of adaptation. We used the 
metrics described by Agrawal and Stinchcombe (2009), which 
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compare the rate of adaptation with estimated genetic covari-
ances to a scenario in which covariances are set to zero. We 
used both directional and nonlinear selection gradients (equa-
tion 2.3b in Agrawal and Stinchcombe (2009).

Results
Subspace analysis
The selection we estimate here was measured in a natu-
ral field environment, but the G-matrices (from Henry & 
Stinchcombe, 2023) and the multivariate latitudinal axis of 
divergence (from Stock et al., 2014) were estimated in con-
trolled glasshouse environments. We found that for both the 
northern and southern P-matrices the first two eigenvectors 
of the shared subspaces were completely shared among ex-
periments and thus that they have a high degree of similarity 
(Supplementary Table S7). While the environmental influenc-
es on each of the experimental groups could contribute to 
differences among them, the subspace analysis suggests that 
those differences are minimal with regards to phenotypic 
variation.

Analysis of natural selection
We found overall strong directional selection, with all traits ex-
cept anther–stigma distance exhibiting a significant relationship 

with relative fitness (Table 1, Supplementary Figure S1). 
Selection favored larger seed mass, faster growth rate, and in-
creased corolla widths. Selection was acting against the number  
of days until the first flower, as has been described previous-
ly in this (Campitelli & Stinchcombe, 2013b; Simonsen & 
Stinchcombe, 2010), and other systems (Austen et al., 2017).

We found significant nonlinear selection acting on 
growth rate and flowering time with positive coefficients 
indicating the potential for disruptive selection (but see 
Mitchell-Olds & Shaw, 1987), and negative correlational 
selection on seed mass and flowering time (Supplementary 
Table S3). Because mixtures of disruptive and correlation-
al selection can be difficult to interpret (Blows & Brooks, 
2003; McGoey & Stinchcombe, 2009; Phillips & Arnold, 
1989; Simms, 1990), we next performed a canonical rota-
tion on the γ -matrix to evaluate the overall curvature of 
the nonlinear selection gradient (Phillips & Arnold, 1989). 
Following Simms (1990) and Reynolds et al. (2010) we refit 
the trait data to the transformed axes and regressed fitness 
on the transformed trait values to obtain the approximate 
standard error of the eigenvalues of the rotated γ -matrix 
(Bisgaard & Ankenman, 1996); we used permutation test-
ing, following Reynolds et al. (2010) for significance testing, 
which evaluates the presence of overall nonlinear selection 
(Chenoweth et al., 2013).

Table 1. Results from the linear mixed model of relative fitness (from total seed set) regressed on the five focal traits. Focal traits were variance-
standardized. Family identity and field block are included as random effect terms.

Trait 𝛽 SE df t value p-value 

Seed mass 0.206 0.095 341 2.175 .030

Growth rate 0.406 0.108 341 3.766 <.001

Flowering time −0.858 0.120 341 −7.174 <.001

Corolla width 0.261 0.114 341 2.287 .023

A-S distance 0.037 0.100 341 0.369 .713

Figure 1. (A) Perspective plot of a thin plate spline describing fitness with respect to the first two canonical axes of the γ-matrix. (B) A contour plot of 
the same thin plate spline. High values of both axes have low fitness. Earlier flowering onset (m1) and faster early growth rate (m2) in combination is 
most strongly selected for, with regions of higher fitness along the extremes of both axes.
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We found that the first two canonical axes of γ are 
significant, with both signs being positive indicating a 
“bowl” shape (Figure 1), with selection favoring negative 
values of both the first axis (m1) and second axis (m2). 
The dominant pattern along both axes was primarily lin-
ear (directional) selection with accelerating fitness benefits 
toward the lower values of m1 and m2, rather than true 
disruptive selection with an intermediate fitness minimum 
(cf. Mitchell-Olds & Shaw, 1987). Along m1, nonlinear 
selection favored individuals with earlier flowering time 
(0.9780), larger corolla widths (−0.1442), larger initial 
seed mass (−0.1183), faster growth rate (−0.0755), and 
smaller anther–stigma distances (0.0554) (Supplementary 
Table S4). Along m2 selection favored individuals with 
faster growth rate (−0.9584), smaller anther–stigma dis-
tances (0.2109), larger corolla widths (−0.1399), later 
flowering onset (−0.1145), and larger initial seed mass 
(−0.0656). Together these axes suggest that while early 
flowering time is strongly associated with high fitness, se-
lection also favors individuals with fast growth rates such 
that growth rate may be able to compensate for later flow-
ering time.

Combining estimates of β, γ, G, and divergence
The correlation between β and the axis of latitudinal diver-
gence was low (r = 0.242) and not significantly different from 
the random expectation (p = .695) (Table 2). The axis of mul-
tivariate latitudinal divergence is thus not aligned with our 
northern selection gradient.

Our estimated selection gradient, β, overall had low cor-
relation with the populations gmax and so was not significant-
ly aligned to any population gmax (Table 2). Pennsylvania’s 
g2 was significantly correlated with β (r = 0.93, p = .023), 
no other g2was significantly correlated with β (Table 2), al-
though the correlation coefficient for β and Hoffman’s g2 
was moderate (r = 0.47). Expectedly, the amount of varia-
tion in the direction of selection is considerably reduced rel-
ative to gmax. Pennsylvania, which had the greatest amount of 
variation in the direction of selection, had a ~65% reduced 
variation when compared with gmax, while Ellerbe, with the 
least variation, had an 85% reduction relative to gmax (Table 
3). We found comparably low levels of genetic variation 
present along m1, the first axis of the canonically rotated 
γ (Supplementary Table S5). Although there is an increased 
level of genetic variation present along m2 relative to that 
in the direction of β and m1, the reduction relative to gmax is 
still considerable, within the range of 42–69% for all popu-
lations. Taken together, these results show that there is little 
genetic variance in the direction favored by selection in our 
field study.

The influence of G on adaptive evolution
We next evaluated how the trait covariances are predict-
ed to influence the overall rate of adaptation. Of the four 
populations from Henry and Stinchcombe (2023) we 
found that three are predicted to be constrained overall by 
the organization of the population G-matrices when com-
pared to a hypothetical with no covariances—Ellerbe by 
56.36%, Hoffman by 18.22%, and Maryland by 16.69% 
(Supplementary Table S6). Pennsylvania, one of the northern 
populations, is predicted to have an evolutionary response 
slightly facilitated by the covariance structure of its traits, 
by 4.67%.

Discussion
Using a broad sample of populations of I. hederacea from 
across a multivariate genetic cline in the eastern United 
States, we estimated directional and nonlinear selection in 
a natural setting on five quantitative traits. Through our 
comparisons of selection with G-matrices estimated from 
northern and southern populations along with the latitudi-
nal axis of divergence, three major results emerged. First, 
the northern directional selection gradient, β, is unaligned 
with the axis of among-population latitudinal divergence 
(Stock et al., 2014), and the G-matrices of two northern 
and two core populations estimated from a previous study 
(Henry & Stinchcombe, 2023), as anticipated by Henry and 
Stinchcombe (2023). Second, the amount of genetic varia-
tion in G in the direction of β is quite low, again suggesting 
that selection favored a combination of traits lacking vari-
ation. Third, the populations are likely constrained in their 
response to selection due to the structure of genetic varia-
tion in the populations, with one exception in the case of the 
Pennsylvania population, which we found has a slight facili-
tation in its expected evolutionary response. We discuss these 
results in the context of the relationship between β, G, and 
divergence, and the role of G in facilitating or constraining 
adaptation to novel, northern environments, below.

Table 2. Pearson’s correlation coefficients and associated p-values for the estimated selection gradient and population gmax. Correlation coefficient 
statistics are also given for the selection gradient and the axis of greatest multivariate divergence (Clinemax).

Population r (gmax) p-value r (g2) p-value 

Pennsylvania 0.184 .767 0.929 .023

Maryland 0.207 .739 −0.223 .719

Hoffman 0.238 .700 0.472 .423

Ellerbe 0.169 .786 −0.188 .762

Vector r p-value

Clinemax 0.242 .695

Table 3.  Projection of the direct selection gradient through each 
population G, standardized by the amount of variation in gmax 95% HPD 
intervals are given for each projection.

Population Standardized projection Low HPD High HPD 

Pennsylvania 0.456 0.194 0.746

Maryland 0.184 0.071 0.317

Hoffman 0.304 0.145 0.492

Ellerbe 0.144 0.052 0.245
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Selection, G, and divergence
G is expected to be aligned with divergence as it deflects the 
response to selection toward the axis of greatest variation 
(Schluter, 1996). In I. hederacea, when previous estimates of G 
across four populations were compared with the axis of mul-
tivariate clinal divergence (Henry & Stinchcombe, 2023) the 
predicted selection gradients were not aligned with the axis 
of greatest variation in G (gmax) for any population. Two pos-
sible explanations exist which could explain the discordance 
in the observed patterns: (a) that there was strong, directional 
selection acting in a direction largely orthogonal to G, and 
thus generating divergence unaligned with G, or (b) that there 
were traits missing from our estimates of G and divergence, 
such that if the missing traits had been included, greater 
alignment would have been detected (Henry & Stinchcombe, 
2023). Our results indicate that missing correlated traits need 
not be invoked to explain the absence of a relationship be-
tween divergence and gmax. The lack of a relationship between 
gmax and divergence is what would be predicted if selection 
were acting in directions lacking genetic variation, which is 
what we found. The northern selection gradient we estimat-
ed, as predicted in the first hypothesis, is not aligned with 
the majority of the variation in G, and there is little genetic 
variation in the direction of β. While the possibility of missing 
traits can never be formally excluded—as it is always possible 
to measure more phenotypes, ad infinitum—we suggest the 
simplest explanation for the observed divergence is selection 
acting in conflict with the organization of genetic variation, 
and divergence occurring despite this due to the strength of 
selection. Given that directional and nonlinear selection is 
acting on trait combinations with little but not absent genetic 
variation, the evolutionary response is expected to be slowed 
but not totally prevented (Blows & Hoffmann, 2005; Blows 
& Walsh, 2009).

While some studies have found among-population di-
vergence occurring along the genetic line of least resistance 
(Costa E Silva et al., 2020; Hine et al., 2009; Royauté et al., 
2020), our study adds to a body of literature demonstrating 
a lack of alignment at microevolutionary scales. Paccard et 
al. (2016) found Arabidopsis lyrata populations from across 
a latitudinal gradient had overall moderate to high angles be-
tween the axis of greatest multivariate divergence and popu-
lation gmax, demonstrating divergence without alignment with 
the genetic line of least resistance. Chenoweth et al. (2010) 
found consistent sexual selection in Drosophila serrata along 
a latitudinal cline, which acted orthogonally to their estimat-
ed population Gs, and thus was constraining the response to 
sexual selection. The among-population divergence predicted 
was intermediate to β and G, indicating that in this instance, 
the reduction of variation along the axis of selection was lead-
ing to a bias in the response toward the genetic line of least 
resistance (Chenoweth et al., 2010). In a detailed analysis of 
the multivariate divergence among ecotypes and regions of a 
small sea snail, Littorina saxatilis throughout a well-studied 
hybrid zone, Garcia (2014) determined that divergence was 
aligned well with previous estimates of natural selection and 
the phenotypic variance–covariance matrix was not influential 
in the among-ecotype divergence. These studies, along with 
work presented here, highlight the need for a re-evaluation 
of the a priori expectation that among-population divergence 
should proceed along the axis of greatest genetic variation. 
While G will deflect responses to selection, the strength and 
orientation of selection are equally relevant. In contrast, over 

much longer time scales, adaptive divergence of rainbow-
fish species, Melanotaenia spp., in lake and stream environ-
ments appears to be unconstrained by the organization of G 
(McGuigan et al., 2005). Despite most divergence among the 
two species likely being driven by drift, and aligned with gmax, 
hydrodynamic differences which evolved were aligned with 
axes of limited genetic variation (McGuigan et al., 2005). In 
addition, as selection may be acting perpendicularly to G, the 
axis of among-population divergence may not serve as a good 
approximation of overall selection. For example, anther–stig-
ma distance shows a stronger latitudinal cline than flowering 
time (Stock et al., 2014), yet our results (Table 1) show that 
flowering time is under much stronger selection; past studies 
from both this location (Simonsen & Stinchcombe, 2010) and 
the center of the range (Campitelli & Stinchcombe, 2013b) 
have also found similar patterns of strong selection favoring 
earlier flowering. We suggest exercising caution prior to mak-
ing such simplifying assumptions without further interroga-
tion of the system of interest.

Constraint and facilitation beyond the range-edge
We measured natural selection beyond the species range edge 
(400 km north of the northernmost collections we have made), 
which gives a picture of how selection might act in the con-
text of range expansion or facilitated migration. Given the ob-
served stability in I. hederacea’s G across populations (Henry 
& Stinchcombe, 2023)—which suggests it is stable enough 
over microevolutionary timescales to be useful in predictions 
of future evolutionary responses—we can use our estimates 
of G and β to project how the northern populations would 
evolve, along with the potential for range expansion. While 
the populations are not well aligned with selection, they have 
demonstrated divergence in mean trait values (Stock et al., 
2014) indicating past responses to selection. Pennsylvania’s 
genetic (co)variation is somewhat aligned with selection, 
with the second axis of variation significantly correlated with 
β. But overall, the G-matrices had reduced variation along 
the axis of directional selection, which will likely constrain 
responses to selection in Northern habitats. We did, how-
ever, find that the covariance structure of Pennsylvania may  
provide facilitation of the evolutionary response to selec-
tion using Agrawal and Stinchcombe’s (2009) extension of 
the multivariate breeder’s equation. The other populations, 
including the other northern population (Maryland) were, 
in contrast, largely unaligned with β and evolutionarily con-
strained by its covariance structure, making it unclear how 
ubiquitous alignment with selection is among range-edge 
populations. While the orientation of G in the Pennsylvania 
population is fortuitous, whether alignment was in response 
to selection or whether it is simply due to drift is unknown.

The mixed results of the four populations emphasize that 
whether a population may successfully establish outside of 
the current range will heavily depend on the source pop-
ulation. The mean population trait values along with the  
organization of G may both contribute to the persistence be-
yond the contemporary range limit (Blows & Walsh, 2009). 
Populations near the current range-edge may not be source 
populations for any newly initiated populations outside the 
range, if long-distance or human-aided dispersal is common. 
Campitelli and Stinchcombe (2014) interpreted population 
genetic patterns from sequencing data as consistent with 
long distance dispersal events, possibly mediated via agri-
cultural equipment. Thus, the variability in alignment with 
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northern selection gradients coupled with long-distance dis-
persal may be contributing to the maintenance of the current 
range limit.

Conclusions
Overall, our study has demonstrated the benefit of combin-
ing both field studies, population sampling, and greenhouse 
quantitative genetic work in understanding the quantitative 
genetic architecture of wild populations. We found that se-
lection is acting largely orthogonal to patterns of both with-
in-population genetic variation, and divergence across the 
landscape. The among-population divergence observed in I. 
hederacea, rather than being purely adaptive, appear to be 
likely due to the interplay of poorly conditioned G-matrices 
(Henry & Stinchcombe, 2023), selection favoring trait com-
binations with little genetic variance, and correlated respons-
es to selection. The combination of strong natural selection 
unaligned with genetic variances–covariances may be more 
widely responsible for divergence than is currently appreci-
ated. However, we have remarkably few case studies where 
landscape divergence, genetic covariance estimates, and es-
timates of natural selection are available for the same sys-
tem—and fewer still for those with field estimates of selection. 
Obtaining these data for a diversity of systems will be a chal-
lenging, but important, ongoing empirical endeavor.
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