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Abstract 
How phenotypic and genetic divergence among populations is influenced by the genetic architecture of those traits, and how microevolutionary 
changes in turn affect the within-population patterns of genetic variation, are of major interest to evolutionary biology. Work on Ipomoea hedera-
cea, an annual vine, has found genetic clines in the means of a suite of ecologically important traits, including flowering time, growth rate, seed 
mass, and corolla width. Here we investigate the genetic (co)variances of these clinally varying traits in two northern range-edge and two central 
populations of I. hederacea to evaluate the influence of the genetic architecture on divergence across the range. We find (1) limited evidence for 
clear differentiation between Northern and Southern populations in the structure of G, suggesting overall stability of G across the range despite 
mean trait divergence and (2) that the axes of greatest variation (gmax) were unaligned with the axis of greatest multivariate divergence. Together 
these results indicate the role of the quantitative genetic architecture in constraining evolutionary response and divergence among populations 
across the geographic range.
Keywords: G-matrix, multivariate evolution, clinal divergence, Ipomoea hederacea, constraint

A major goal in evolutionary biology is to understand the 
relationship between genetic variation within populations 
and phenotypic divergence between populations (Antonovics, 
1976; Endler, 1977; Walsh & Blows, 2009). Range-edge pop-
ulations provide an interesting setting in which to investi-
gate this relationship. Populations existing on the margin of 
species’ ranges are expected to have smaller population siz-
es (Brown et al., 1995), which are more susceptible to drift, 
and limited gene flow compared to more central populations 
(Sexton et al., 2009). Environmental gradients will often ad-
ditionally create different selective pressures across the geo-
graphic range, favoring phenotypic and genetic divergence 
among populations (Barton, 2001; Endler, 1977; Slatkin, 
1978). Here we examine the divergence and evolutionary 
potential of four populations of an annual plant, Ipomoea 
hederacea, sampled from the center and northern edge of its 
range with respect to five clinally varying traits.

The evolutionary response to selection is dependent not 
only on local selection but on the underlying genetic archi-
tecture of the traits undergoing selection. The ability to adapt 
to the local environment depends on both standing genetic 
variation and covariation, represented as a genetic covari-
ance matrix, G (Agrawal & Stinchcombe, 2009; Antonovics, 
1976; Falconer & Mackay, 1996; Lande, 1979; Lande & 
Arnold, 1983). G shapes evolutionary responses to selection, 
as the relationships among traits lead to correlated responses 
(Lande, 1979; Lande & Arnold, 1983). Divergence among 
populations in response to local selection may thus be con-
strained or facilitated by trait (co)variances. The multivariate 

trait combination with the greatest amount of genetic varia-
tion, dubbed the “genetic line of least resistance” by Schluter 
(1996) has been shown to influence macroevolutionary 
responses by deflecting the response to selection toward trait 
combinations with the most genetic variation (Schluter, 1996).

Exactly how G-matrices will change with divergence in 
trait means across latitudinal ranges is not clear, although 
there are numerous reasons to predict that they will. For 
example, while some work suggests that G-matrices are 
expected to exhibit stability over various evolutionary times-
cales (Arnold et al., 2008; Lande, 1979; Schluter, 1996), this 
assumes genes underlying traits are from an infinitesimal 
model with a Gaussian distribution (Lande, 1979). G may be 
unstable through time if the distribution of the alleles under-
lying traits is skewed (Barton & Turelli, 1987; Turelli, 1988). 
Additionally, G among populations may differ if a population 
is small and subject to substantial genetic drift or inbreed-
ing (Doroszuk et al., 2008; Jones et al., 2004; Lande, 1979; 
Phillips et al., 2001), has experienced recent population bot-
tlenecks (Shaw et al., 1995; Roff, 2000), or is under strong 
selection due to novel conditions (Conner et al., 2011; Roff, 
2000; Turelli, 1988; Uesugi et al., 2017), which are all fea-
tures often associated with range-edge populations. Recent 
theory by Chantepie and Chevin (2020) suggests that in finite 
populations subject to drift, genetic correlations will more 
closely reflect mutational (co)variances as effective popula-
tion sizes become smaller. Chantepie and Chevin (2020) note 
that colonizing populations (which may be similar to range-
edge populations) often experience reduced N
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selection, and thus G will be more reflective of mutational 
covariances, and stronger genetic constraints. Taken together, 
we might predict less overall genetic variance (Johnson & 
Barton, 2005), or different patterns of genetic covariance, 
which may in turn lead to evolutionary constraint in range-
edge populations.

There are, however, some scenarios in which G might be 
predicted to be similar among populations. If range-edge 
populations frequently experience swamping gene flow from 
the center of the range (Garcia-Ramos & Kirkpatrick, 1997; 
Kirkpatrick & Barton 1997), their G might show few differ-
ences compared to core populations, with populations diverg-
ing along the homogenized axis of maximal (co)variation 
(Guillaume & Whitlock, 2007). Some theory also suggests 
that dispersal into peripheral populations can enhance genetic 
variance (counteracting the effects of drift), facilitating adap-
tation to range-edge conditions (Polechová & Barton, 2015; 
Polechová, 2018).

Empirical assessment of divergence among population 
G-matrices in natural populations has led to mixed results. 
Some studies find that G is fairly stable (Delahaie et al., 2017; 
McGoey & Stinchcombe, 2021; Puentes et al., 2016; Roff & 
Mousseau, 1999) with most divergence among populations 
occurring along gmax (Royaute et al., 2020; Silva e Costa et al., 
2020). In Australian populations of Drosophila melanogaster 
sampled along a broad environmental gradient, Hangartner 
et al. (2019) estimated G-matrices for size, desiccation, and 
thermal traits. They found no differentiation among popula-
tion G-matrices, demonstrating the robustness of G, despite 
diverging local selection. In contrast, Hine et al. (2009) evalu-
ated the divergence in the G-matrices for cuticular hydrocar-
bons of nine Drosophila serrata populations along the same 
gradient, and found significant divergence among Gs. Wood 
and Brodie (2015) showed that environmental effects on G 
(e.g., due to novel habitats) were often as large, or larger, than 
population differentiation, suggesting that environmental sen-
sitivity in the expression of G can have effects as large as the 
accumulated effects of drift, selection, and mutation between 
diverging populations. Similarly, some studies have found 
remarkable shifts in G through time and/or across environ-
ments (Björklund et al., 2013; Cano et al., 2004; Doroszuk 
et al., 2008).

Collectively, this diverse body of theory and empiricism 
suggests numerous reasons why G from range-edge and pop-
ulations from the interior of a species range should differ. 
Under a wide range of biologically plausible assumptions 
about genetic architecture, inbreeding, drift, effective popu-
lation size, bottlenecks, dispersal, and strong selection—all of 
which are expected to be relevant to range-edge populations 
and those adapting to a gradient—lead to the prediction of 
differences in G. However, alternative theoretical assump-
tions about genetic architecture or divergence could lead to 
predictions of no or little change in G. Past empirical work on 
the evolution of G likewise offers contrasting guidance: G has 
shown minimal changes in some cases and strong changes in 
others, attributable sometimes to temporal or environmental 
effects. Consequently, whether range-edge populations that 
have diverged in trait means along a latitudinal gradient show 
altered G—and thus potentially altered evolutionary potential 
and constraint—remains an unanswered empirical question.

Ipomoea hederacea, an annual plant which grows across 
the eastern USA from PA to FL, has latitudinal genetic clines 
in a variety of quantitative traits (Klingaman & Oliver, 

1996; Stock et al., 2014) and leaf shape (Bright-Emlen, 
1998; Campitelli & Stinchcombe, 2013), a Mendelian trait. 
These clines do not appear to be due to drift, but rather a 
response to selection, as no latitudinal patterns in neutral loci 
have been found (Campitelli & Stinchcombe, 2013, 2014). 
Previous work by Stock and colleagues (2014) focused on 
among-population patterns found evidence of significant 
clinal divergence. Briefly, Stock et al. (2014) grew individ-
uals in a common greenhouse environment from 20 pop-
ulations, spanning the gradient sampled by Campitelli and 
Stinchcombe (2013). They used selfed seeds from 10 mater-
nal lines sampled per population and up to 8 individuals per 
matriline. They performed redundancy analysis using the 
matriline means of five focal traits (seed mass, early growth 
rate, flowering time, corolla width, and anther–stigma 
distance) regressed on latitude of origin. Flowering time, 
anther–stigma distance, and corolla width exhibited sig-
nificant latitudinal clines, while seed mass and growth rate 
had marginally significant divergence. Stock et al. (2014) 
estimated the axis of greatest multivariate divergence, the 
mean trait combination that is most different between pop-
ulations of I. hederacea across latitudes, which we use here 
alongside more deeply sampled populations to compare 
within-population trait organization to among-population 
trait divergence.

Our research aims were: (1) to determine whether 
Northern and Southern populations differed in the overall 
heritability and genetic variance of the focal traits, (2) eval-
uate how genetic variation within populations was aligned 
relative to the axis of multivariate genetic divergence, and (3) 
assess population level divergence of the G-matrices. To do 
so, we estimated trait heritability and genetic variance–cova-
riance matrices of four populations of I. hederacea; collected 
from the northern range-edge and the core of the range. We 
expected the axis of trait divergence between populations to 
be biased toward the axis of greatest variation within pop-
ulations, the genetic line of least resistance (Schluter, 1996).

Methods
Propagation and trait measurements
We harvested seed from populations from the edge of agricul-
tural fields in Pennsylvania (40.116611°N, 76.398889°W), 
Maryland (39.581861°N, 77.816861°W), Hoffman, North 
Carolina (35.074139°N, 79.556694°W) and Ellerbe, North 
Carolina (35.091722°N, 79.742722°W). We sampled seed 
pods haphazardly from vines 1–2 m from one another to min-
imize repeat sampling of maternal plants, which served as the 
founders of the matrilines we used in our experiment. We grew 
one seed from 50 randomly chosen matrilines per population 
in a common greenhouse environment and allowed these indi-
viduals to self-fertilize. One death prior to seed set resulted in 
49 matrilines from Ellerbe, NC. We harvested selfed seeds from 
each maternal plant and grew ~11 focal individuals (range: 
2–11, mean = 10.7) from each line, resulting in a total sample 
of 2,133 plants. While our use of selfed progeny precludes esti-
mating additive genetic variance, selection acts on the broad-
sense variation rather than just the additive components of 
variation in mainly selfing species (Roughgarden, 1979), mak-
ing this design appropriate for I. hederacea (Ennos, 1981; Hull-
Sanders et al., 2005; Campitelli & Stinchcombe, 2014).

We grew plants in cone-tainers (Stuewe & Sons, OR, USA) 
filled with Pro-Mix soil in a glasshouse from April to October 
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2018. All plants received a dilute fertilizer solution (N-P-K: 
10-52-10) every 2 weeks. Day length was initially 16 hr at 
28 °C, reduced to 12 hr at 25 °C on day 32, and 8 hr at 22 °C 
on day 38 to promote flowering.

Trait measurements followed Stock et al. (2014). Prior 
to planting, we weighed each seed and recorded individual 
mass. We counted leaves at 17 days after planting and again 
on the 26th or 27th day after planting; we estimated growth 
rate as the difference in leaf counts divided by the number of 
days, and as such it is in units of new leaves/day. We measured 
corolla width and anther–stigma distance on the first flower 
of each individual using digital calipers. We measured the dis-
tance from the lowest and highest anthers to the stigma and 
calculated the mean of the absolute distance to characterize 
anther–stigma distance.

Data preparation
Four of the five focal traits, (seed mass, early growth rate, 
corolla width and anther–stigma distance) were standardized 
to mean = 0 and standard deviation = 1 using the grand mean 
and standard deviation across populations to allow for mean-
ingful comparison of differences (Hansen & Houle, 2008; 
Hine et al., 2009). We elected to use this standardization to 
eliminate differences in the scale and units of our traits (e.g., 
anther–stigma distance in mm, growth rate in leaves per day, 
and flowering time in days) and because mean standardiza-
tion can be difficult to apply to traits like flowering time, 
which have an arbitrary rather than natural zero (Hansen 
& Houle, 2008, Houle et al., 2011). During the experiment 
the shift from lengthening to shortening days interrupted the 
flowering schedule. The glasshouse in which the plants were 
grown was exposed to ambient light, and the change in arti-
ficial light used to induce flowering was largely overwhelmed 
by the natural photoperiod. For this reason, we transformed 
the number of days until the first flower using ordered quan-
tile normalization, which preserves the order of flowering but 
results in a Gaussian distribution (Peterson & Cavanaugh, 
2020). The ordered quantile normalization normalization 
results in a distribution centered on zero with a standard devi-
ation of one, which is the same scale as all other traits.

Univariate analysis
To determine broad-sense heritabilities of the traits we fit 
Bayesian generalized linear mixed-effect models for each 
trait across all populations. We estimated the models using 
MCMCglmm in R (Hadfield, 2010) using the mixed model,

y = Xβ + Z1u1 + Z2u2 + e (1)

For each trait, y, we ran a separate model. In equation (1), 
X, Z1 and Z2 represent design matrices for the fixed effect 
of population, and random effects of matriline and green-
house block, respectively. β and u are vectors of the related 
parameters. We included the greenhouse block to control for 
the effect of microenvironmental differences within the glass-
house. For seed mass, we used the greenhouse block of the 
maternal plant. Residual error is represented by e.

We tested six priors and summed the Deviance Information 
Criteria value for each of the five univariate models (see 
Supplementary Materials for details). We used the prior 
with the lowest summed DIC score, although due to the 
amount of data in the model, the prior was not very influen-
tial. The effective size of the samples was greater than 85% 
of the total number of samples and the autocorrelation was 

below 0.05 for all parameters (Hadfield, 2010). To evaluate 
whether there was meaningful broad-sense heritability, we 
ran models within each population with and without the 
matriline variable and compared DIC values, per Puentes 
et al. (2016). We considered models where the matriline 
reduced the DIC score >2 to have a “significant” genetic 
component and thus H2 was significant. We constructed 
comparable models for validation, using REML, which 
are presented in the Supplemental Material. Heritability 
estimates were similar, with the greatest difference in 
Heritability of 5.2%, and an average absolute difference 
of 1.7%. The 95% highest posterior density (HPD) inter-
vals from Bayesian models overlapped REML heritability 
estimates in all cases, and as such Bayesian estimates are 
presented in the main text.

Multivariate analyses
We estimated the total genetic variance–covariance matri-
ces for each population using Bayesian generalized linear 
mixed-effect models through MCMCglmm in R (Hadfield, 
2010). We again used the mixed model,

y = Xβ + Z1u1 + Z2u2 + e (2)

where X, Z1 and Z2 represent design matrices for the vectors 
of trait means (β), the total genetic effects (u1) and the green-
house block effects (u2). We fit diagonal-block matrices, such 
that the genetic, greenhouse block, and residual effects were 
estimated at each population level, with no covariances 
among populations. The residual error, also estimated at 
each population level, is represented by the term e.

We used weakly informative inverse-Wishart priors for 
estimating the variance and covariances where the distribu-
tion was described by the variance (V) and the belief param-
eter (nu) and the default prior for the fixed effect estimates, 
N(0,108). We tested a variety of priors (see Supplementary 
Materials for details) to determine the robustness of estimates 
and selected the model with the best fitting prior, determined 
by the lowest average Deviation Information Criteria score to 
use for our analyses (Table S3). The final prior for the resid-
ual variance was given by a diagonal matrix of 1’s with the 
degree of belief slightly above n−1, for n traits (V = diag(5), 
nu = 4.002), for each population level. The best prior for the 
random effects was a matrix of 1/8 the population phenotypic 
variance–covariance matrix (Table S4) and a belief parameter 
slightly above n−1 (V = (P/8) × 100, nu = 4.002, where P is the 
phenotypic (co)variance matrix). All the response variables in 
the model were multiplied by a factor of 10, which improves 
the estimation of small variances (and is subsequently fac-
tored out of the genetic variance–covariance matrix). To 
account for this factor of 10 in the response variables, the 
Phenotypic variance–covariance matrix (P) was multiplied by 
a factor of 100 in the priors.

We ran full models for 505,000 iterations, with a burn in 
of 5,000 and a thinning interval of 500, resulting in 1,000 
iterations sampled from the posterior distribution. As with 
our univariate models, the effective size of the samples were 
greater than 85% of the total number of samples and all 
parameters had <0.05 autocorrelation (Hadfield, 2010).

Null models
For some analyses a null model was necessary, as MCMC 
methods can only estimate variance greater than zero (matri-
ces must be positive definite). We constructed randomized 
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G-matrices where the values only reflected sampling error as a 
point of comparison to our actual estimates. Following Walter 
et al. (2018) and McGoey & Stinchcombe (2021), we ran-
domly assigned individuals to matrilines within populations, 
without replacement, resulting in G-matrices that are only 
due to sampling error, as any phenotypic similarity among 
individuals is only due to random sampling, rather than true 
genetic ancestry. Our design includes significant fixed effects, 
which Morrissey et al. (2019) note will make these null dis-
tributions larger than they should be, which should make our 
approach conservative. We also note that because each ran-
domized G-matrix only reflects sampling variation, the expec-
tation of a large number of G-matrix comparisons should be 
near 0 (as each population only reflects sampling variation), 
but the distribution of these comparisons reflects the range of 
potential outcomes one can obtain if each G only reflects sam-
pling, making it a sensible null model. The within-population 
randomization approach also allows us to compare whether 
each estimated G differs from expectations due to sampling 
(Sztepanacz & Blows, 2017).

We fed each randomized “population” into the same model 
as the observed data, run for 20,000 iterations with a burn 
in of 5,000 and a thinning interval of 100. We iterated the 
randomization and model estimates 1,000 times. We com-
bined the final posterior sample of each “population” in the 
randomized models to be used as composite posteriors. We 
assessed chains visually for stability and with Gelman and 
Rubin convergence diagnostic criteria.

G-matrix comparisons
We used several metrics to compare G-matrices, each of 
which has different strengths and weaknesses (Aguirre et 
al., 2014; Hine et al., 2009; Kirkpatrick, 2009; Krzanowski, 
1979; Puentes et al., 2016; Teplitsky et al., 2014; Walter et 
al., 2018). In general, our goal was to use a variety of metrics 
to compare G-matrix size, concordance between patterns of 
genetic variance and clinal divergence, and similarity in the 
responses to selection that each G-matrix would produce.

G-matrix size
We calculated the trace of the G-matrices to determine the 
total amount of genetic variance in each population. The 
trace then describes the overall size of the G-matrices, or 
the total amount of quantitative genetic variation they con-
tain, which may be smaller in populations affected by recent 
bottlenecks or strong selection as genetic variation is lost or 
eroded. We tested our hypotheses using the mean of the pos-
terior distributions and the 95% HPD intervals, to examine 
whether there were differences in quantitative genetic vari-
ance. We also utilized the posterior distribution of G to retro-
spectively evaluate how different the traces of the Northern 
and Southern populations. To do so, we used the Region of 
Practical Equivalence (ROPE) technique detailed by Kruschke 
(2018). We divided the posterior distribution of the Northern 
populations by the posterior distributions of the Southern 
populations and calculated 95% HPD intervals of the dis-
tributions of differences. If the 95% HPD intervals contains 
the entire ROPE (which we set at 0.9 to 1.1, ±10%) then any 
difference between the populations is likely to be negligible. 
If the HPD interval does not overlap with the ROPE we can 
conclude that the traces of the populations are distinct. In the 
third case, where the HPD overlaps only part of the ROPE, 

the distinction is unclear, and any conclusion of similarity 
would be relatively weak, suggesting a combination of low 
power, and sampling or estimation error.

Genetic variation in the direction of maximum 
clinal divergence
To evaluate the alignment between the axis of greatest genetic 
variation (gmax) of each population, and between gmax and 
the vector of greatest multivariate divergence (Clinemax from 
Stock et al., 2014) we calculated the correlation coefficient 
between these vectors. We used random unit vectors as a null 
comparison. We note that Stock et al. (2014) used and pre-
sented results from mean-standardized data; we reanalyzed 
their data to estimate the vector of greatest clinal divergence 
using standard deviation standardized data, to match our use 
of standard deviation-standardized data from the greenhouse 
experiment.

We projected the vector of maximum clinal divergence 
through each G-matrix (using bTGb, where b is the vector 
of clinal divergence; see Lin & Allaire, 1977) to calculate the 
genetic variance in direction of clinal divergence. Given that 
the G-matrices had different shapes, the maximum amount of 
genetic variation in any direction differed between the pop-
ulations. To allow for fair comparison, we standardized this 
value using the amount of variance associated with gmax, the 
first eigenvector of G, in each population. Thus to estimate 
the standardized genetic variance along the direction of max-
imum clinal divergence, we estimate bTGb/λ1, where λ1 is the 
first eigenvalue of G, representing the vector of maximum 
genetic variance in each population.

Random skewers
We performed a random skewers analysis (Aguirre et al., 
2014; Cheverud & Marriog, 2007) following Aguirre et al. 
(2014). Briefly, 1000 randomly generated normal vectors 
were projected through each population’s G. We compared 
the response from each projection between populations to 
determine which random vectors which produced response 
differences. We then calculate the variance–covariance matrix 
of the skewers which result in response differences between 
populations and performed eigenanalysis to generate the R 
matrix. The R matrix describes the trait space where differ-
ences in the response to skewers exist between populations, 
with the first eigenvector describing the axis with the greatest 
differences between populations.

Krzanowski’s subspace analysis
Krzanowski’s subspace analysis provides a method of eval-
uating the similarity in geometry of multiple variance–cova-
riance matrices. The approach works by examining whether 
the subspaces containing most of the genetic variation (e.g., 
the leading PCs) in each population are shared, or in com-
mon. We first determine the shared space (H) of all popula-
tions, from a subset of the leading PCs (eigenvectors) of each 
population, using:

H =

p∑
t=1

AtAT
t

(3)

where superscript T indicates transposition, and a subset t 
of PCs of each G-matrix are included in A, and summation 
is to p populations (p  =  4 in our case; Krzanowski, 1979; 
Aguirre et al., 2014). As per Aguirre et al. (2014), the number 
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of eigenvectors used for each population were those which 
explained >90% of the total variation to account for differ-
ences in the shape of the population G-matrices. The eigen-
values of H can range from 0 to p, which indicates common 
sub-spaces to the matrices being compared (i.e., the leading 
PCs describe similar directions of multivariate space). If the 
eigenvalues of H are less than p (4 in our case), this indicates 
that genetic variation described by that eigenvector differs 
among the populations. To evaluate which populations are 
most similar we determine the smallest angle between the 
mean posterior subspace of each population and the mean 
shared subspace H, as per Aguirre et al. (2014).

Tensor analysis
Differences between matrices can be evaluated by calculat-
ing the fourth-order covariance tensor, describing the vari-
ances and covariances between matrices (Hine et al., 2009). 
We used the fourth-order genetic covariance tensor analysis 
developed by Hine et al. (2009), and outlined by Aguirre et al. 
(2014), and Walter et al. (2018). We refer interested readers to 
these papers for full details (especially Fig. 2 of Walter et al., 
2018), and only provide a brief overview here. The fourth-or-
der tensor of the matrices describes the variance and covari-
ances among the population G-matrices. The tensor can be 
represented as a symmetric [n(n + 1)/2] matrix (S) (Basser & 
Pajevic, 2007), where n is the number of traits, with elements 
describing the variances and covariances of genetic variances 
and covariances among the four populations. The matrix S 
can then be subject to eigenanalysis followed by scaling and 
rearrangement, such that the eigenvalues and eigentensors 
describe how the G-matrices vary. Eigentensors with larger 
eigenvalues (which explain a larger percentage of variance) 
describe dimensions of greater variation in the G-matrices; 
the eigentensors can themselves be subjected eigenanalysis, to 
determine the linear combination of traits (eigenvectors) that 
lead to the difference in G-matrices captured by the eigenten-
sors. The covariance tensor analysis can thus be used to evalu-
ate axes of differences among the genetic variance–covariance 
structure of the populations.

Results
Univariate analyses
We estimated broad-sense heritability of each trait within 
populations using a Bayesian model (Table S1, Figure S1), 
and confirmed results with REML (Table S2). All traits had 
heritability greater than zero in at least 3 of the 4 popula-
tions (Table S1). The Pennsylvania population lacked signif-
icant heritability for anther–stigma distance (Table S1). The 
mean of all the heritability estimates was 0.213 (ranging from 
0.011 to 0.535). There was no significant difference between 

Northern and Southern populations, although Northern 
populations tended to have lower heritability estimates than 
Southern populations (Table S1).

G-matrix size
We present population G-matrices, 95% HPD intervals, 
and null expectations due to sampling variation in the 
Supplemental Material (Table S5, Table S6), and focus here 
on comparisons of the matrices. The G-matrices all contain 
variances with HPD intervals that do not overlap the 95% 
HPD intervals of the null G-matrices, although some traits 
in some populations did have overlapping 95% HPD inter-
vals, indicating that the variation may be very small (Table 
S5). Two traits, corolla width and anther–stigma distance, 
have variation indistinguishable from sampling variation 
in all populations except Hoffman (Table S5); we none-
theless retained these traits in our analyses to allow com-
parisons of G to divergence in trait means, which requires 
these traits.

We found that Hoffman, NC had significantly greater total 
genetic variation than either Northern population, estimated 
as the trace of the G-matrices. Hoffman had approximately 
67% greater genetic variation than populations from Ellerbe, 
NC, 97% greater variation than Maryland, and 170% 
greater variation than Pennsylvania. The 95% HPD intervals 
of Hoffman did not overlap with either Northern population, 
but did overlap slightly with the other Southern population, 
Ellerbe, NC.

We next used the ROPE technique (Kruschke, 2018) 
to evaluate the differences in the traces of Northern and 
Southern populations. We compared both Southern popula-
tions to both Northern populations, although Hoffman, NC 
was already detectably different from the Northern popula-
tions, we include it for completeness. We divided the poste-
rior distribution of the Northern populations by the Southern 
populations and compared the 95% HPD interval of this dis-
tribution to our ROPE. If the populations on average have the 
same trace the distribution of quotients should be centered on 
1.0, so we set our ROPE to 0.9–1.1, as is standard (Kruschke, 
2018). The comparisons between Hoffman and the Northern 
populations both resulted in quotient distributions with 95% 
HPD intervals which did not overlap the ROPE, as expected 
(Figure S2). The 95% HPD interval of the Maryland and 
Ellerbe quotients completely overlapped the ROPE, while 
the 95% HPD interval of the of the Pennsylvania and Ellerbe 
quotients only partially overlapped the ROPE. These anal-
yses suggest that the Pennsylvania population may in fact 
have a reduced trace but that estimation and sampling error, 
and power, preclude us detecting it. In contrast, the trace for 
the Maryland population appears to be robustly similar to 
Ellerbe.

Table 1. Genetic variance in the direction of maximum clinal divergence for each population. In the standardized column (Variance [std]), the variances 
are standardized by the eigenvalue of the leading eigenvector of each population, to express this relative to the direction of greatest genetic variation. 
Lower and higher HPD values demarcate the 95% highest posterior density interval.

Population Variance Lower HPD Higher HPD Variance (std) Lower HPD Higher HPD 

Pennsylvania 0.125 0.062 0.202 0.423 0.207 0.674

Maryland 0.184 0.089 0.284 0.433 0.237 0.644

Hoffman, NC 0.224 0.111 0.355 0.290 0.116 0.518

Ellerbe, NC 0.256 0.135 0.390 0.555 0.316 0.837
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Genetic variation in the direction of maximum 
clinal divergence
Overall, the amount of genetic variation in the direction of 
maximum clinal divergence was small, roughly on par with 
the third eigenvalues of each population, and there were no 
significant differences between any populations (Table 1). To 
fairly compare between populations, which differ in their 
total amount of genetic variation (Table 2) and the variation 
along gmax (Table S7), we standardized the genetic variance in 
the direction of clinal divergence by the genetic variance asso-
ciated with gmax, so the values are relative to the linear combi-
nation of traits with the maximum possible genetic variance 
in each population. The standardized projections of the 
Northern populations were slightly larger than the Southern 
populations, but there were no significant differences between 
them. In general, genetic variance in the direction of clinal 
variation was ~30%–55% of the genetic variance associated 
with gmax.

The correlation between gmax from each of the G-matrices 
and direction of maximum clinal divergence is not signifi-
cantly different from the expected correlation between gmax 
and a random vector (Figure 1). Although, we might expect 
the direction of maximum clinal divergence to be aligned 
with directions of genetic variation, this does not appear to 
be the case for any population. The correlation between PC2 
through PC5 of the population G-matrices and direction 
of maximum clinal divergence followed the same pattern 
(Figure S3).

Random skewers
The considerable fraction of the random vectors produced 
some difference in response between populations, with 454 
of 1,000 resulting in responses where at least one pairwise 
comparison had 95% HPD intervals which did not overlap. 
Following Aguirre et al. (2014), we took this subset of vectors 
which resulted in response differences and created a variance–
covariance matrix of the vectors. We then performed eigena-
nalysis to evaluate the trait space which describes differences 
among populations. The highest trait loading of the first 
eigenvector is corolla width, followed by flowering time and 
seed mass (Table 3). These differences in response are largely 
attributable to Hoffman, NC. Projecting the eigenvectors of 
the R-matrix through each population’s G-matrix, we found 
that Hoffman had significantly more genetic variation along 
this eigenvector than the other three populations (Figure 2). 
In other words, the response difference we detected with 
random skewers appears to be due to the Hoffman popula-
tion having more genetic variation for a linear combination 
of traits made up primarily of corolla width, flowering time 
and seed mass, with lesser contributions of growth rate and 
anther–stigma distance, than the other three populations.

The second and third eigenvalues of R are of similar mag-
nitude, and when projected through the G-matrices, reveal 
similar patterns. The second axis of R captures trait combi-
nations with opposing and larger values for anther–stigma 
distance and flowering time (Table 3); we observed that 
Hoffman had more genetic variation for this combination of 
traits than Pennsylvania. Collectively, these data indicate that 
the differences in the G-matrices detected by random skew-
ers were primarily driven by the Hoffman population, and 
it having more variation in the linear combinations of traits 
measured (RSe1: corolla width, flowering time and seed mass 
in concert; RSe2: flowering time and anther–stigma distance 
in opposition).

Krzanowski’s subspace analysis
To construct H, the shared subspace, we used the number of 
eigenvectors which explained at least 90% of the variation 
in each population. The first four eigenvectors of each pop-
ulation satisfied this condition. Lambda, which ranges from 
1 to 4, approaches 4 in the first eigenvector of H (Table 4, 
Figure 3). A lambda value nearing 4 means the populations 
all contain the variation sufficient to recreate the shared 
trait space. Thus, the populations contain considerable 
shared trait space in the first dimension of H. The second 
through fourth eigenvalues are slightly lower but similar 
to the randomized comparison (Figure 3). Overall, there is 

Table 2.  The total amount of genetic variation in each population estimated as the trace of G. Low and high values demarcate the 95% highest 
posterior density interval (HPD). The trace of the randomized null G-matrices are included for comparison.

Population Trace of G Lower HPD Upper HPD Random Trace L. HPD U. HPD 

Pennsylvania 0.622 0.465 0.806 0.232 0.163 0.317

Maryland 0.850 0.637 1.121 0.235 0.160 0.323

Hoffman, NC 1.677 1.256 2.178 0.274 0.186 0.377

Ellerbe, NC 0.990 0.734 1.306 0.248 0.169 0.341

Figure 1. The correlation between the gmax of each population G-matrices 
and the vector of greatest multivariate clinal divergence (Observed, in 
blue) compared to the correlation between the gmax of each population 
G-matrices and randomized vectors (Randomized, in gray). Error bars 
represent the 95% HPD intervals. “Penn” is Pennsylvania, “Mary” is 
Maryland, “Hoff” is Hoffman, NC and “Ellr” is Ellerbe, NC.
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no evidence of divergence among populations in the shared 
subspace.

To evaluate any population level divergence from the 
shared subspace we calculated the angle between the axes of 
H and the subspaces of the populations (AtAt

T), which cap-
ture at least 90% of the genetic variation in each population. 
Larger angles indicate that populations differ in some manner 
along that axis of shared subspace. The first four eigenvec-
tors of Pennsylvania, Hoffman, and Ellerbe, and Maryland 
were used to generate the shared subspace. Overall, the 
angles between H and the population subspaces are similar 
and small with increasing uncertainty for higher eigenvectors 
(Figure S4), meaning differences between the populations and 
the shared trait subspace are minimal.

Covariance tensor analysis
We calculated the fourth-order covariance tensor for the 
population G-matrices to assess areas of divergence between 
the populations. We used the randomized G-matrices, which 

represent sampling variation within populations, as a null 
contrast. For observed G-matrices, we estimated three non-
zero eigentensors for S. Of these three eigentensors, the first 
has an eigenvalue significantly greater than the null expec-
tation based on sampling variation creating each G-matrix 
independently (Table S8, Figure 4).

To determine the contributions of each population to the 
eigentensor, we estimated the coordinates of the populations 
within each eigentensor. The greater the absolute value of the 
coordinate the greater the contribution a population has. In 
the first eigentensor (E1, which explains 80.3% of the varia-
tion across all non-zero eigentensors), Hoffman again stands 
out from the other populations and has the greatest contri-
bution. Thus, the first eigentensor, which describes the great-
est amount of variation among the population G-matrices, is 
largely driven by differences between Hoffman, NC and all 
the other populations. In contrast, Ellerbe, NC has the larg-
est coordinate value in the second eigentensor (E2), which 
slightly overlaps the null expectation, and explains 14.4% 
of the variation among G-matrices.

Table 3: Eigenanalysis of the R-matrix from the random skewers analysis which resulted in difference in response when projected through populations. 
The R-matrix summarized the trait combinations which resulted in differences to the projected response. Each eigenvector (RSe1 through RSe5) 
describes an independent combination of traits which capture differences among populations. The eigenvalues describe the proportion of variation of 
each eigenvector within R, larger values indicate more of the variation in the skewers are explained.

Trait RSe1 RSe2 RSe3 RSe4 RSe5 

Seed mass −0.436 −0.211 0.366 −0.306 0.733

Growth −0.036 −0.108 0.804 −0.214 −0.543

Flow time −0.477 −0.547 −0.019 0.671 −0.152

Corolla −0.690 0.146 −0.385 −0.466 −0.370

AS dist. −0.324 0.789 0.266 0.440 0.085

Eigenvalues 0.352 0.251 0.196 0.123 0.078

Figure 2. Genetic variance (Vg) in the direction of each eigenvector of the R matrix, where the R matrix is composed of vectors which resulted in 
response differences between populations. Bars represent 95% highest posterior density intervals, with the mean estimate represented by a point. 
Hoffman, NC has greater variation than all population along RSe1, and greater variation than Pennsylvania along Rse2.
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Eigenanalysis of the eigentensors reveals that the first eigen-
vector of E1, (e11) which explains 47.3% of overall variation 
(58.95% of variation within E1), is most heavily weighted by 
seed mass and corolla width (similar to RSe1 of the R-matrix, 
as analyzed by Random Skewers), with all trait loadings 
being of the same sign (Table 5). The first eigenvector of E2 
(e21), which explains 6.18% of overall variation among pop-
ulations (46.28% of variation in E2), describes a dimension 
most heavily weighted by the seed mass and growth rate 
of opposing signs (Table 5). Thus these two eigentensors 
describe population differences in the relationship between 
seed mass and other traits, especially with respect to the 
Southern populations.

We next projected these eigenvectors through the popula-
tion G-matrices, as we did for the random skewers, to assess 
how much variation each population has along these axes. 
Not unexpectedly, Hoffman, NC has significantly greater 
genetic variation along the first and second eigenvector of E1 
(Figure 5). Ellerbe has greater variation than the other pop-
ulation along the first eigenvector of E2, although the HPD 
intervals overlap all other populations. The second eigenvec-
tor of E2 similarly has overlapping 95% HPD intervals for 
all populations but the Southern populations have slightly 
more genetic variation in this direction than the Northern 
populations.

Similarity between skewers and tensors
Given the similarities between the first eigenvector of E1 of S 
and the results from the random skewers R-matrix projection, 
we calculated the correlation between the two vectors and 
found that they are almost perfectly correlated (corr = 0.97). 
This congruence between two vectors of differentiation calcu-
lated with entirely different methods provides additional sup-
port for this axis describing considerable differences among 
populations.

Discussion
Understanding patterns of genetic variation within popu-
lations, and how they relate to phenotypic differentiation 
among them, is a central goal in evolutionary biology. Our 
analyses of genetic (co)variance matrices and divergence 
of four natural populations of I. hederacea point to three 
main results. First, despite the variety of evolutionary forces 
that could produce differences in G between Northern and 
Southern populations—including strong selection, drift, and 
bottlenecks—we found remarkably similar patterns of G 
and genetic variation. Our results add to a growing body of 
cases in which differences in G are predicted a priori, but not 
detected. Second, contrary to a variety of theoretical predic-
tions, we failed to detect a relationship between the axis of 
greatest multivariate clinal divergence and the axes of great-
est genetic variation within populations. Below, we discuss 
these results in light of how genetic constraints and reduced 
dimensionality of G influence phenotypic divergence, and 
divergence in G these populations.

Evolutionary potential and divergence of G
Our study of G within these four populations allows both an 
evaluation of the evolutionary potential within each popula-
tion, and the divergence (or lack thereof) of G itself between 
range-edge populations and central populations. Using a vari-
ety of approaches, including estimating trace of G, and three 
methods for comparing G among populations, we found a 
consistent pattern of results. These populations all appear to 
be of reduced rank, have similar amounts of total genetic vari-
ance, and there do not appear to be appreciable differences 
between range-edge populations and core populations in the 
structure, size, or orientation of G.

We first assessed the total amount of genetic variation 
among populations and found that there was a trend along 
latitude for decreased genetic variation in the Northern pop-
ulations, although our ROPE analysis (Kruschke, 2018) sug-
gests at least one of the Northern and Southern population 
pairs (Maryland and Ellerbe) are similar, making this trend 
slight. Hoffman, NC, one of the Southern populations, stood 
out among others as possessing significantly greater variation 
than all other populations. Similarly, one of the Northern 
populations, Pennsylvania, had the lowest trace, and in com-
parison with Ellerbe the HPD interval of the quotient of the 
two only slightly overlapped the ROPE, suggesting it may 
only overlap with the Southern populations due to sam-
pling or estimation error. However, while we detected one 
Southern population with increased genetic variation, and 
possibly one Northern population with reduced variation, the 
remaining two populations have robustly similar amounts of 

Table 4. Eigenvalues (lambda) for each eigenvector of the shared 
subspace H with the 95% highest posterior density (HPD) intervals. A 
value of 4 would indicate that all the populations have the variation in 
their subspaces required to recreate the respective eigenvalue of H, 
lower values indicate that populations do not and thus lack similarity.

Eigenvector Lambda Lower HPD Higher HPD 

h1 3.958 3.894 3.999

h2 3.783 3.441 3.985

h3 3.533 2.981 3.981

h4 3.200 2.654 3.755
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Figure 3. Eigenvalues (lambda) for each eigenvector of the shared 
subspace H, (where h > min k). Higher values of lambda indicate greater 
similarity of population subspaces. The first three eigenvectors can be 
almost entirely recreated by each population subspaces, with greater 
uncertainty in h3 and h4.
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quantitative genetic variation. In like fashion, trait heritabil-
ities tended to be higher in Southern populations (Table S1), 
albeit again with overlapping HPD intervals. Thus, it appears 
that the Hoffman population is distinct from the rest, rather 
than Southern populations overall strongly differing from 
Northern populations. A meta-analysis examining quantita-
tive genetic variation across species ranges found similarly 

mixed results, with an overall nonsignificant reduction of 
variation toward range edges (Pennington et al., 2021).

Two of the traits, corolla width and anther–stigma dis-
tance, had very small variances indistinguishable from sam-
pling variance in three of the populations (Hoffman being 
the exception). The lack of variation in these traits in G 
make observing differences among populations impossible 
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Figure 4. (A) Eigenvalues (α) for each non-zero eigentensor from the observed and randomized G-matrices. Note that the upper and lower bounds of 
the randomized data, reflecting only sampling variation, are small and hard to distinguish on the figure. (B) Coordinates of each population in the first 
non-zero eigentensor of S, E1. (C) Coordinates of each population in the second non-zero eigentensor of S, E2.

Table 5: Eigenvectors of each non-zero eigentensor of observed S. The variance explained by each non-zero eigentensor of S is given, along with the 
eigenvalues of each eigentensor in the direction of each eigenvector. These values describe the contribution of the independent trait combinations 
described by the eigentensors. The proportion of variance is the proportion of variance of the eigentensors explained by each eigenvector. The trait 
loadings for eigenvalues of each of the three eigentensor are given, along with the eigenvalue of the eigentensors.

Eigenvector σ2 of 
Ex 

Eigenvalue Prop. of 
σ2 

Seed mass Growth Flow time Corolla AS dist. 

e1.1 0.803 0.919 0.589 −0.623 −0.127 −0.375 −0.603 −0.304

e1.2 0.297 0.191 0.000 0.331 −0.632 −0.029 0.700

e1.3 0.251 0.161 0.583 0.537 −0.188 −0.379 −0.438

e1.4 −0.065 0.041 0.517 −0.765 −0.318 −0.207 0.065

e1.5 0.027 0.017 0.071 0.033 0.569 −0.670 0.470

e2.1 0.134 0.823 0.463 0.713 −0.616 −0.289 −0.089 0.147

e2.2 0.401 0.225 0.626 0.645 0.239 −0.360 −0.077

e2.3 −0.354 0.199 −0.090 −0.278 −0.896 −0.195 −0.272

e2.4 0.189 0.106 −0.229 0.044 −0.086 −0.548 0.798

e2.5 −0.011 0.006 0.200 0.353 −0.223 0.724 0.511

e3.1 0.064 −0.655 0.339 0.952 0.007 −0.011 0.262 −0.157

e3.2 0.589 0.305 0.094 −0.685 −0.555 −0.438 −0.148

e3.3 0.356 0.185 0.197 0.275 −0.345 −0.235 0.843

e3.4 0.312 0.162 −0.085 −0.626 0.160 0.605 0.458

e3.5 −0.018 0.009 −0.185 −0.251 0.740 −0.565 0.181
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with respect to corolla width and anther–stigma distance. 
In Clinemax both corolla width and anther–stigma distance 
showed significant among-population divergence of the 
means, which suggests that the paucity of within-population 
variation for these traits is likely due to selection. We retained 
these traits in our G-matrices to allow for comparison with 
the axis of greatest multivariate divergence, Clinemax (from 
Stock et al., 2014).

Our results are suggestive of the overall stability of the 
G-matrices across populations, and add to a handful of 
cases in which G remains similar despite adaptation to gra-
dients, differences in selective regimes, and altered patterns 
of gene flow. Given the a priori expectation that drift and 
population bottlenecks should introduce stochastic changes 
in G (Doroszuk et al., 2008; Jones et al., 2004; Lande, 1979; 
Phillips et al., 2001; Roff, 2000; Shaw et al., 1995) and that 
populations of I. hederacea likely have low effective popu-
lations sizes and may frequently experience bottlenecking 

(Campitelli & Stinchcombe, 2014) and thus are expected 
to be susceptible to drift, the degree of stability we found is 
surprising. In this regard, our results are similar to McGoey 
& Stinchcombe (2021), who found little difference in 
G-matrices between introduced and native populations of 
ragweed (Ambrosia artemisiifolia) despite expectations to 
the contrary. More generally, our results add to other findings 
of G being relatively stable across geography (Arnold et al., 
2008; Delahaie et al., 2017), even in cases in which theoreti-
cal guidance suggests a strong expectation of divergence in G. 
In Scandinavian populations of Arabidopsis thaliana, Puentes 
et al. (2016) expected to find divergence in G due to differ-
ences in selective environments and limited gene flow. While 
the populations had univariate differences the G-matrices of 
all populations demonstrated overall similarity in shape and 
orientation. Similarly, Hangartner et al. (2019) estimated G 
in locally adapted populations along a broad climatic gra-
dient with disparate selective regimes and found that G had 
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Figure 5. Genetic variation in the direction of eigenvectors of the fourth-order covariance tensor S. e11 is the first eigenvector of the first eigentensor, 
e12 is the second eigenvector of the first eigentensor, e21 is the first eigenvector of the second eigentensor, e22 is the second eigenvector of the 
second eigentensor. The vectors were projected through each of the G-matrices to determine the amount of genetic variation that exists in that 
dimension.
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minimal changes across eastern Australian populations of 
D. melanogaster. In island and mainland populations of the 
blue tit (Cyanistes caeruleus) where two distinct, heteroge-
nous landscapes produce divergent selection and gene flow 
between populations is expected to be low to effectively 
absent (in the case of island-mainland) Delahaie et al. (2017) 
found weak overall differentiation in G. Although G can 
evolve under certain conditions, and empirical studies have in 
some cases detected remarkable differences, ours is one of the 
growing number of studies that have failed to detect changes 
in G despite strong expectations.

Both the covariance tensor and random skewers analysis 
suggest that the Hoffman, NC population differed from the 
others (this population also had the most genetic variation 
overall and in the direction of clinal divergence). The cova-
riance tensor and skewers approaches are complementary, in 
that the tensor reflects patterns of variation and covariation 
among G, while the skewers analysis is insensitive to differ-
ences in the total amount of genetic variance and magnitude 
of the response (as it uses the correlation between response 
vectors, but not their magnitude; Hansen & Houle, 2008). 
These differences are not simply due to Hoffman’s greater 
overall genetic variation. The first eigenvector of the first 
eigentensor (e11), the first eigenvector of the random skew-
ers analysis (RSe1), and gmax within the Hoffman population 
were all highly correlated, with heavy loading from flower-
ing time, corolla width, and seed mass. The Hoffman, NC 
population site did not differ substantially from the others: 
all were collected from roadsides adjacent to agricultural 
fields and were reasonably large to allow for sampling from 
70 to 100 individuals. Hoffman was, however, the only pop-
ulation where we observed both leaf shape genotypes (leaf 
shape is a simple Mendelian polymorphism in this species; 
Bright-Emlen, 1998). Some speculative possibilities are that it 
was founded by heterozygous individuals, multiple founders 
of opposite leaf shape genotypes, or is subject to balancing 
selection on the leaf shape locus (as has been shown by Bright 
& Rausher [2008]), and thus has more variation for any of 
these reasons.

Collectively, our diverse set of analyses points to a single 
population being qualitatively different from the others, with 
divergence driven by a handful of traits in that population, 
rather than range-edge populations having any inherent dif-
ferences in the structure of G. At face value, these findings 
might suggest that range-edge populations of I. hederacea 
are not small enough to experience substantial genetic drift 
that could reduce genetic variance compared to central pop-
ulations; alternatively, it may be that all populations experi-
ence frequent extinction and colonization dynamics, across 
the range, and that this does not have differential effects on 
genetic variance. We suspect the latter possibility is more 
likely, especially when taken together with the population 
genetic work of Campitelli and Stinchcombe (2014), in which 
they suggested that metapopulation dynamics with high 
extinction and dispersal rates may explain the patterns of 
neutral genetic diversity.

Clinal divergence and G
In general, phenotypic divergence is expected to be aligned 
with G under three overall conditions. First, under genetic 
drift, we expect that phenotypic divergence in a suite of traits 
should be related to the overall amount of standing quanti-
tative genetic variance in those traits (Lande, 1979; Phillips  

et al., 2001). Second, when G-matrices are ill-conditioned, or 
of reduced rank, we expect short-term evolutionary responses 
to be biased towards directions of multivariate trait space 
with genetic variance (Chenoweth et al., 2010). In other 
words, once a G-matrix differs from spherical, evolutionary 
responses will be dominated by the directions containing the 
most variance. In the third scenario, when β  =  gmax, diver-
gence, Δz, proceeds along gmax, and we expect the maximal 
evolutionary response (Gaydos et al., 2013). Hangartner et al. 
(2019) found that G-matrices of range-edge populations of D. 
melanogaster were in fact aligned with clinal divergence and 
that the trait covariances improved the adaptive potential of 
peripheral populations. Work on the cuticular hydrocarbons 
of D. serrata population by Hine and colleagues (Chenoweth 
et al., 2008; Hine et al., 2009) found patterns in mean trait 
divergence, reduction in associated variation in gmax, and 
divergence among populations along gmax. Similarly, Aguirre 
et al. (2014) found that those populations share considerable 
trait space, although there were axes of divergence among the 
populations. In contrast, phenotypic divergence does not have 
to be aligned with G if selection has been strong and per-
sistently favoring alternative combinations of traits, or consis-
tent selection over long evolutionary timescales. For example, 
McGuigan et al. (2005), found that hydrodynamic adaptation 
in rainbow fish was only weakly associated with gmax, and 
was primarily aligned with the trailing eigenvectors of G; they 
interpreted this as a result of long-term selection towards a 
new phenotypic optimum.

With this context in mind, many of our results suggest that 
we should have observed a relationship between clinal diver-
gence and G: the traits are genetically variable, both indi-
vidually (Table S1) and as a linear combination (Table 1). It 
also seems unlikely that the phenotypic divergence detected 
is a result of long-term selection, similar to McGuigan et al. 
(2005), as I. hederacea currently inhabits (and was collected 
from) ephemeral, disturbance-prone habitats such as road-
sides, agricultural fields, and cleared areas. Consequently, 
many of the conditions that can produce a relationship 
between G and divergence appear to be met.

Two potential explanations for why we do not see such a 
relationship between G and divergence occur to us. The first is 
that previous work on I. hederacea (Campitelli & Stinchcombe, 
2013; Simonsen & Stinchcombe, 2010; Stock et al., 2014) and 
this study inadvertently omitted an ecologically important, cor-
related trait. For this scenario to explain the lack of relationship 
between divergence and G, there would have to be an omitted 
trait that is both highly variable within populations, and highly 
diverged between populations, such that its inclusion would 
predominate both gmax and any estimate of a divergence vector. 
The problem of missing traits is inherent to studies of pheno-
typic evolution; while the traits we measured capture aspects 
of size, growth, phenology, and floral morphology, it is possible 
that other traits related to ecophysiology, seed bank dynamics, 
or other aspects of the life cycle are more important.

Second, it may be that natural selection is acting in a direc-
tion that is nearly orthogonal to gmax, thus leading to the diver-
gence that is at a substantial angle from gmax. If this were the 
case, it would be possible for the G-matrices we estimated to 
produce evolutionary responses that could lead to the observed 
divergence. One clue in support of this hypothesis is that flow-
ering time appears to load relatively weakly on gmax in the 
Pennsylvania population, but in the past has been detected 
to be under very strong directional selection in this species 
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(Campitelli & Stinchcombe, 2013; Simonsen & Stinchcombe, 
2010). Similarly, Campitelli & Stinchcombe (2013) found selec-
tion favoring decreased flowering time and increased early and 
mid-season growth rates (i.e., β elements of opposite signs), 
while we found that growth rate and flowering time load in the 
same direction (i.e., are positively correlated) of gmax in three of 
four populations. As such, there are past observations of selec-
tion acting strongly on traits with relatively little genetic vari-
ance, or in opposite directions on positively correlated traits, 
both of which could lead to β being orthogonal to gmax. Indeed, 
Simonsen & Stinchcombe (2010) found strong natural selec-
tion almost orthogonal to gmax in a field study of size traits and 
flowering time, due to size traits being highly variable and under 
weak selection, and flowering time being less variable but under 
very strong selection. The divergence observed may thus be the 
product of selection, but without requiring recourse to long-
term selection towards a single optimum. While there are field 
studies of natural selection on some of the traits we studied, an 
overall study of all of them is necessary to distinguish between 
the missing trait explanation and β being orthogonal to gmax.

Conclusions and Future Directions
Determining the relationship between G and phenotypic 
divergence, or divergence of G-matrices themselves, is a 
challenging empirical and statistical endeavor. Practical con-
straints make constructing well estimated G-matrices for doz-
ens of populations nearly impossible (Arnold et al., 2008) is 
certainly the case for I. hederacea. The most tractable and 
testable hypothesis to emerge from our work is that natural 
selection on these five traits is poorly aligned with gmax. Future 
field studies will be required to further elucidate the action of 
natural selection on this species, and the ecological mecha-
nisms behind selection for this suite of traits and others.
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