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1  | INTRODUC TION

Anthropogenic influences, from climate change, to habitat destruc-
tion, to pollution, are altering ecosystem function and diminishing 
native biodiversity across the globe. One important way humans are 
changing the ecological landscape is through the accidental or inten-
tional movement of organisms into novel locations. The ecological 
and economic impacts of alien plants continue to be immense (Sakai 

et al., 2001), and for this reason, it is important for both applied and 
basic research reasons to understand how and why certain plant 
populations become invasive. Whether and how invasive species 
evolve in their new range is key to understanding their establish-
ment and success (Colautti & Barrett, 2013), yet we have a weak 
understanding of the evolutionary potential of size, performance, 
and life history traits in introduced species and their role in invasion 
success. Here, we use a quantitative genetic approach to compare 
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Abstract
Invasive species are a global economic and ecological problem. They also offer an op-
portunity to understand evolutionary processes in a colonizing context. The impacts 
of evolutionary factors, such as genetic variation, on the invasion process are increas-
ingly appreciated, but there remain gaps in the empirical literature. The adaptive po-
tential of populations can be quantified using genetic variance– covariance matrices 
(G), which encapsulate the heritable genetic variance in a population. Here, we use a 
multivariate Bayesian approach to assess the adaptive potential of invasive popula-
tions of ragweed (Ambrosia artemisiifolia), a serious allergen and agricultural weed. 
We compared several aspects of genetic architecture and the structure of G matrices 
between three native and three introduced populations, based on phenotypic data 
collected in a field common garden experiment. We found moderate differences in 
the quantitative genetic architecture among populations, but we did not find that 
introduced populations suffer from a limited adaptive potential or increased genetic 
constraint compared with native populations. Ragweed has an annual life history, is 
an obligate outcrosser, and produces very large numbers of seeds and pollen grains. 
These characteristics, combined with the significant additive genetic variance docu-
mented here, suggest ragweed will be able to respond quickly to selection pressures 
in both its native and introduced ranges.
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multivariate evolutionary potential between introduced and native 
populations of the prolific invader Ambrosia artemisiifolia (common 
ragweed).

Most research on species invasions has focused on possible eco-
logical explanations and consequences, while the evolutionary de-
terminants and outcomes have only recently been emphasized, and 
remain less well understood (Bacigalupe, 2009). Recent evidence 
suggests that evolutionary responses can be more important in de-
termining invasion success and spread than traditional ecological 
explanations. For example, local adaptation accounted for greater 
fitness effects than enemy release and allocation to competitive abil-
ity (EICA) in a study of Lythrum salicaria (Colautti & Barrett, 2013). 
Whereas there has long been an emphasis on individual- level traits, 
it is increasingly recognized that population- level factors such as ge-
netic variation will have major impacts on the ability of a species to 
establish in a new environment and to respond to natural selection 
(Bacigalupe, 2009; Crawford & Whitney, 2010). Adaptation can be 
a pivotal factor in allowing a colonizing population to establish and 
spread (Colautti & Barrett, 2013; Huey et al., 2005). Since almost all 
traits that are likely to be under selection in a new environment are 
quantitative (Dlugosch & Parker, 2008a), characterizing the quanti-
tative genetic variation of invasive populations is critical for under-
standing invasion success.

Despite the importance of heritable genetic variation for the 
ability of a population to respond to selection, there is a dearth of 
studies on invasive species from a quantitative genetics perspective 
(Bacigalupe, 2009) and neither theory nor logic offer straightfor-
ward a priori predictions. While there is often an assumption that 
all introduced populations will suffer from founder effects, any ini-
tial bottlenecks can be mitigated by multiple introductions (Roman 
& Darling, 2007); postintroduction hybridization or admixture can 
also create novel genotypes not found in the native range, fueling 
adaptation and invasion (see Bock et al., 2015; Dlugosch & Parker, 
2008a, 2008b). Patterns of neutral genetic variation are unlikely to 
be helpful, as they are often uncorrelated with heritable quantitative 
variation (Mittell et al., 2015; Reed & Frankham, 2001). The presence 
and magnitude of epistasis effects (Monnahan & Kelly, 2015), and 
linkage disequilibrium (Hill & Maki- Tanila, 2015) both impact addi-
tive genetic variance, and neither can be captured by simple mea-
sures of neutral genetic variation. Quantitative variation will be less 
impacted by losses of rare alleles (Dlugosch & Parker, 2008a), and 
some theory and empirical studies suggest epistatic and dominance 
variance can actually occasionally be converted to additive variance 
(Bryant et al., 1986; Cheverud & Routman, 1996; Goodnight, 1988; 
Willis & Orr, 1993, but see Barton & Turelli, 2004; Turelli & Barton, 
2006). Invasive species are also often subject to strong directional 
selection, which in principle could create negative linkage disequilib-
rium among alleles affecting the selected traits, potentially reducing 
the amount of additive genetic variance (i.e., due to the Bulmer ef-
fect). Many studies of introduced species also suffer from insuffi-
cient sampling replication within the introduced and native ranges 
(Colautti et al., 2009). Collectively, these diverse evolutionary ge-
netic and ecological processes that can affect quantitative genetic 

variation defy simple predictions for invasive species: Quantitative 
genetic variance may increase, decrease, or be unaffected by the 
processes leading to invasion. Ultimately, understanding an invasive 
species’ capacity to respond to selection and evolve, and whether 
that differs from its native range, is fundamentally an empirical ques-
tion that requires directly comparing additive genetic variation (VA) 
and covariation (G) in multiple introduced and native populations, 
given the many potential evolutionary genetic mechanisms that 
could potentially affect genetic variance and covariance in intro-
duced populations.

There have been numerous calls in the literature for quantita-
tive genetic comparisons between native and invasive populations 
(e.g., Bacigalupe, 2009; Dlugosch & Parker, 2008a, 2008b; Lawson 
Handley et al., 2011), and the role of quantitative genetic variance in 
invasion biology has been long recognized (e.g., Lewontin, 1965). The 
presence of postinvasion local adaptation (e.g., Colautti & Barrett, 
2013; see Bock et al., 2015 for other examples), which requires 
quantitative genetic variance in traits and fitness, suggests that such 
variance is not eliminated by the invasion process. Despite this, we 
lack an overall consensus about whether invasive species have in-
creased, decreased, or unaffected genetic variance in the traits likely 
to be important for invasion success (e.g., life history, phenology, 
size, and other fitness- related traits), and thus whether postinvasion 
evolutionary responses are likely to be reduced, unaffected, or even 
accelerated. Characterizing quantitative genetic variation in invasive 
populations is necessary for understanding whether or how species 
will evolve in a new range, and their potential for invasion success 
(Colautti & Barrett, 2013).

A well- established literature on variation in single traits has 
uncovered genetic variance in almost all of them (Lynch & Walsh, 
1998), which can falsely lead to the assumption that limited genetic 
variance is not a significant barrier to adaptive evolution (Blows & 
Hoffmann, 2005). Even if there is additive genetic variance for a 
univariate trait, there can still be genetic constraints on adaptation 
due to covariances with other traits (Agrawal & Stinchcombe, 2009; 
Lande & Arnold, 1983; McGuigan, 2006). The ability of a popula-
tion to respond to a selective force will be dictated by the available 
variance in multiple traits along with the covariances between those 
traits. These genetic variances and covariances are summarized by 
the genetic covariance matrix, G; recall that genetic covariances are 
due to linkage disequilibrium between loci, or loci having pleiotro-
pic effects on multiple traits, while phenotypic (co)variances reflect 
both genetic and environmental influences on traits (Lynch & Walsh, 
1998). A multivariate genetic framework, incorporating the impacts 
of multiple traits and their genetic correlations, is necessary for a 
comprehensive understanding of the available genetic variation in a 
population (Blows, 2007; Blows & Hoffmann, 2005; Walsh & Blows, 
2009).

The G matrix summarizes the available genetic variances and 
covariances and offers an integrated view of quantitative genetic 
variation, which allows for the estimation of constraints (Blows, 
2007; Lande, 1979). Since it includes limitations caused by rela-
tionships among traits, it can expose constraints on adaptation, 
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even in cases where all the traits individually have sufficient ge-
netic variation (Blows, 2007; Dickerson, 1955). The G matrix will 
dictate the speed and direction of a population's response to selec-
tion (Steppan et al., 2002). Understanding evolutionary potential 
in invasive species therefore requires a comparison of G matrices 
between invasive and native populations to determine whether 
invasive species face genetic constraints and will have reduced 
phenotypic evolutionary potential. In addition to the uncertain ef-
fects of introductions on quantitative genetic variance described 
above, traditional evolutionary forces such as drift, migration, and 
selection can in principle affect G (e.g., Guillaume & Whitlock, 
2007; Jones et al., 2003; Phillips et al., 2001; Turelli, 1988; also 
see Colautti & Barrett, 2011). Meta- analyses also suggest that 
the environment can affect G directly (i.e., through G*E) in ways 
comparable to evolved differences between populations (Wood & 
Brodie, 2015). Invasive species are likely to experience all of these 
evolutionary and genetic forces simultaneously that can in princi-
ple affect G: bottlenecks and potentially enhanced drift, multiple 
introductions, novel environments, and altered patterns of migra-
tion and selection. It remains an open question whether and how 
these forces affect G in natural populations of invasive species in 
ways suggested as possible by theory and laboratory studies.

In this study, we examine how quantitative genetic architecture 
varies between introduced and native populations of the prolific in-
vader Ambrosia artemisiifolia (common ragweed). We focus on size 
and phenology traits that are likely to be under selection in the na-
tive and introduced ranges, and likely to lead to continued invasion 
success, agricultural problems, and allergenic symptoms. Specifically, 
we ask the following questions: (1) How do native and introduced 
populations differ in their mean phenotypes, genetic variances, 
and heritabilities in key phenotypic traits? (2) Are there correla-
tions between traits that could accelerate or constrain adaptation? 
(3) Is there a divergence in the G matrices of native and introduced 

populations? (4) How would native and invasive populations differ 
in their responses to selection based on their genetic (co)variances?

2  | METHODS

2.1 | Study species

Ambrosia artemisiifolia is an annual herb (Bassett & Crompton, 1975) 
and is self- incompatible (Friedman & Barrett, 2008; Li et al., 2012). 
Preferring open habitats, it occurs in disturbed areas and is a com-
mon agricultural weed (Bassett & Crompton, 1975). A native to 
North America, A. artemisiifolia has spread to Europe, Asia, South 
America, and Australia (Friedman & Barrett, 2008). Ragweed pro-
duces around 1.2 billion grains of pollen per individual (Fumanal 
et al., 2007). During its flowering season in the late summer and early 
fall, it is the major cause of hay fever (Bassett et al., 1976), and about 
10% of people test positive for allergies to Ambrosia (Gergen et al., 
1987). In Europe, it is both a public health concern and the cause of 
crop yield losses (Fenesi & Botta- Dukát, 2012). Unsurprisingly, given 
that ragweed is a wind- pollinated obligate outcrosser, FST values are 
low (mean FST = 0.025, range = −0.019, 0.096, Martin, 2011, while 
McGoey et al., 2020 estimated FST = 0.056 for European samples 
and FST = 0.06 for North American samples). Phenotypic diversity 
and neutral marker diversity are high in the invasive range, sug-
gesting evidence of multiple introductions (Genton et al., 2005; van 
Boohemen et al., 2017).

2.2 | Seed collection and preparation

We collected seed from three populations from both the native 
(Canada and the United States) and introduced (France) ranges 

F I G U R E  1   Map of Ambrosia artemisiifolia collection sites. Seeds were collected from at least 200 plants in each population in the fall of 
2012. Note that the North American samples span latitudes 39.66−44.38 °N, while the French samples span 43.95– 45.66 °N
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(Figure 1), from overlapping latitudinal ranges (North America: 
39.6584– 44.37683 °N, France: 43.9475– 45.66117 °N) (Colautti 
et al., 2009). All the populations were large, ranging from hundreds 
to tens of thousands of individuals. We sampled seed from at least 
200 plants in each population. Sampling was haphazard, but we 
avoided collecting from plants adjacent to each other. Using meth-
ods adapted from Willemsen (1975) and Friedman (personal commu-
nication), we stratified seeds at 4°C for three months in plastic bags 
filled with silica and distilled water.

2.3 | Parental generation

Beginning in January 2013, we removed seeds from stratification 
(4°C) and placed them on filter paper in petri dishes. We placed all 
the petri dishes in the greenhouse and monitored them for germina-
tion and signs of desiccation. As seeds germinated, we planted them 
into a 75% Pro- Mix, 20% sand, and 5% topsoil soil mix in seedling 
flats. Petri dishes and early germinants were moistened and watered 
as needed, and all dishes and plants were treated equally. After four 
weeks, we transplanted the plants into 4- inch round pots. To keep 
plants small and accelerate time to flowering, we compressed the 
growing season by switching the lights from long- day photoperiods 
(14:10) to short- day photoperiods (10:14), mimicking natural changes 
in daylength experienced after the summer solstice. To prevent un-
controlled pollination, we used individual chambers and a purified 
air delivery system (McGoey et al., 2017). Each plant was placed in 
a chamber in advance of flowering. The chambers were composed 
of plastic bags attached to Styrofoam rings, which fit tightly around 
each pot. The plastic bags were inflated with purified air, and indi-
vidual plants were only removed from the grid for controlled crosses 
(see McGoey et al., 2017 for more details). All individuals in the pa-
rental generation experienced the same common environment (soil 
mix, pots, light, and purified air chambers).

2.4 | Crossing design

Breeding designs are critical to partition components of variance 
in traits (Conner & Hartl, 2004; Falconer & Mackay, 1996; Lynch & 
Walsh, 1998). We used a nested paternal half- sibling design, where 
we crossed a group of sires (pollen donors) to multiple randomly 
chosen dams (pollen recipients) (Falconer & Mackay, 1996). For each 
population, we had 50 sires crossed to three unique dams each (150 
crosses per population) for a total of 900 unique crosses. Individual 
sires were used only with their three unique dams, and no sires or 
dams were re- used.

2.5 | Offspring generation

The offspring generation was grown at the Koffler Scientific Reserve 
(www.ksr.utoro nto.ca; 44.803°N, 79.829°W) during the summer of 

2014. As with the parental generation, we stratified seeds and then 
placed them on petri dishes to germinate. We transplanted seedlings 
from flat trays four weeks after germination into three blocks. Prior 
to planting, we removed all vegetation and tilled the soil. At the end 
of June, seedlings were transplanted over three days into the field. 
Within each block, we arranged plants in square grids with 10- cm 
spacing between plants in a grid. We transplanted 2700 germinants 
(= 9 per paternal half- sibling family) into the field. Failed establish-
ment and early mortality reduced sample sizes, although the median 
number of paternal half- sibling families per trait ranged from 39 to 
49 (sample sizes of sires, dams, and total plants per paternal half- 
sibling family are given in Table S2). To promote establishment, we 
supplemented with water and removed interspecific competitors 
within the plots for three weeks after transplantation. We also re-
moved interspecific competition adjacent to the plots to prevent 
shading.

We measured early height (at two weeks), final height, final num-
ber of branches, and date of first flower. We observed little variation 
in germination timing, suggesting that most variation in early height 
was due to establishment and growth over the first two weeks, al-
though subtle differences in germination timing might lead to con-
tributions of plant age in early height. Final height was measured 
in early October, after vertical growth appeared to have stopped, 
and prior to a killing frost, which would have made estimates of re-
productive effort impossible. Most ragweed plants are monoecious 
(Bassett & Crompton, 1975), and so we measured proxies of both 
male and female fitness. We used the total inflorescence length, 
which is correlated with pollen production (Fumanal et al., 2007), as 
a proxy for male reproductive effort. For female reproductive out-
put, we used seed mass that is highly correlated with seed number 
(r2 = 0.96, p < 0.001) (MacDonald & Kotanen, 2010).

2.6 | Statistical analyses

All statistical analyses were conducted in R version 3.3.1 (R 
Development Core Team, 2016).

2.6.1 | Differences in means

We first performed a MANOVA to examine whether there was mul-
tivariate divergence between continents and populations in mean 
phenotypes. We used all six traits (early height, final height, branch 
number, time to first flower, male fitness, and female fitness) as re-
sponse variables. Independent variables included the fixed effects 
of continent, and population nested within continent.

2.7 | Bayesian quantitative genetic analysis

Historically, it has been difficult to estimate uncertainty around 
quantitative genetic parameters (Morrissey et al., 2014), but Bayesian 

http://www.ksr.utoronto.ca
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Markov chain Monte Carlo (MCMC) methods offer a feasible solution 
(Hadfield, 2015). Using a Bayesian MCMC framework enabled us to 
include uncertainty when estimating the genetic variances and covar-
iances in each population and then carrying those forward through 
all subsequent analyses and comparisons among populations (Aguirre 
et al., 2014; Teplitsky et al., 2014). Specifically, we sampled from the 
posterior distribution of the estimated parameters multiple times to 
characterize uncertainty in the estimated quantitative genetic pa-
rameters. Posterior distributions remain valid for downstream calcu-
lations and algebraic operations (Hadfield, 2010; Wilson et al., 2010; 
2011), and by performing operations (matrix multiplication, estima-
tion of heritability, etc) on many samples of the posterior, it is possible 
to characterize uncertainty in the calculated metrics.

Estimates of variance components will be constrained to values 
greater than zero (Walter et al., 2018), which poses challenges for 
traditional statistical significance testing. To assess the significance 
of our estimates, we generated a null distribution based on permut-
ing phenotypes within populations. We first created 1000 random-
ized datasets for each population, where trait values were sampled 
without replacement and randomly assigned to sires and dams. We 
then fit the models exactly as described below, but on permuted 
data, for all 1000 randomized datasets to generate a distribution of 
expected outcomes under the null. We used these null expectations 
in both subsequent univariate and multivariate analyses to assess 
the significance of estimated variance components— in essence, 
asking whether the observed phenotypic similarity among related 
individuals in the experiment was greater than would be expected 
by random chance.

2.7.1 | Univariate analyses

We started by fitting a univariate model for each response variable, 
partitioning variation among sires (VS) and dams within sires (VD), 
separately for each geographic population. We used a burn- in of 
200,000 iterations, ran the model for 5,000,000 iterations, and sam-
pled the posterior every 500 iterations to obtain 10,000 samples of 
the posterior distribution. We monitored autocorrelations between 
samples and convergence using the coda suite of tools (Plummer 
et al., 2006). Preliminary inspection of variance components did not 
show evidence of Markov chains becoming “stuck” near zero, so we 
did not pursue parameter- expanded priors (cf Puentes et al., 2016). 
From the estimated sire and dam variance components (see Table 
S1), and the residual variance (VE), we estimated the narrow- sense 
heritability for each trait within each population.

Since we used a half- sibling breeding design, additive genetic 
variance (VA) was four times the variation in half- sibling families 
within a population (VS) (Lynch & Walsh, 1998); note that when 

VS

Vs +VD +Ve

> 0.25, estimated narrow- sense heritability values will be 
>1, which has been observed before (Hill & Thompson, 1978). 
Heritability values in Table S1 are narrow- sense estimates of VA/VP. 
To assess whether observed heritabilities were greater than 

expected by chance, we compared them with the 95% HPD intervals 
of the randomized heritability estimates.

2.7.2 | Estimation of G matrices

We also used MCMCglmm to generate G matrix estimates for the 
six traits. We explored a variety of different priors for the expecta-
tions of variances and degrees of belief in MCMC models, ranging 
from diagonal matrices, sire and dam covariance matrices equaling 
½ the phenotypic covariance matrix (P), and sire and dam covariance 
matrices equaling 1/4P. We compared the output of different prior 
specifications with the Gelman and Rubin diagnostic (Plummer et al., 
2006) and found that they sampled the same posterior distribution 
(Gelman & Rubin, 1992; Puentes et al., 2016). In the results below, 
we present output from models with priors where the expectations 
of sire and dam covariance matrices were equal to 1/4P, with degree 
of belief (nu = n − 0.998, where n is the number of traits). We used 
500,000 burn- in iterations and 5,000,000 total iterations, and sam-
pled the posterior every 500 iterations to obtain 10,000 samples of 
the posterior distribution of G.

In these models, block was treated as a fixed effect and dam was 
nested within sire; we estimated G matrices separately for each pop-
ulation. The full model in matrix notation was as follows: 

μ and B(i) are the fixed effects of intercept and block, Sj rep-
resents sires, Dk(j) represents dams within sires, and el(ijk) represents 
the residual variance. For our design, i ranges from 1 to 3 for the 
blocks, j from 1 to 50 for sires, and k from 1 to 3 for dams within 
sires.

For some of the subsequent analyses, we removed the fitness 
proxy traits or treated them separately (noted explicitly below). 
We present results from analyses using traits standardized by the 
global standard deviation, following Hine et al. (2009) and Gosden 
and Chenoweth (2014). Conclusions from the standardized and un-
standardized analyses did not differ in statistical or biological signif-
icance (McGoey, 2019).

2.8 | Comparison of G matrices: overview

Researchers have used many different methods to compare G ma-
trices (see Aguirre et al., 2014; Calsbeek & Goodnight, 2009; Roff 
et al., 2012). Because there are more than a dozen methods for G 
matrix comparison, with different strengths and weaknesses (see, 
e.g., Aguirre et al., 2014; Puentes et al., 2016), we used several meth-
ods with complementary strengths and weaknesses. We sought 
methods that were biologically interpretable and mathematically 
tractable, and where statistical uncertainty could be estimated. The 
biological implications of some metrics can be difficult to ascertain, 

(1)yijkl = � + Bi + Sj + Dk(j) + el(ijk)
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so here we emphasize methods with clear links to the evolution of 
the populations (Aguirre et al., 2014).

To examine overall differences in matrix attributes (i.e., size, 
shape, orientation), we used Krzanowski's common subspace anal-
ysis and the fourth- order genetic covariance tensor. Krzanowski's 
method determines whether the majority of genetic variance in trait 
space is common among populations. The subspace analysis allows 
an investigation whether the leading directions of multivariate trait 
space (i.e., trait combinations that explain the most variance in the 
data) are in common among a set of matrices. Put broadly, it char-
acterizes whether the leading principal components are in common 
among matrices. As described by Blows et al. (2004), this approach 
is more complete than comparing the angles of the leading PCs, be-
cause it accounts for the possibility that PC1 of one matrix or popu-
lation may in fact be very similar to PC2 of another. In contrast, the 
tensor analysis characterizes patterns of variation (or divergence) 
in matrices. It can identify the trait combinations with the greatest 
difference in genetic variance among populations, and, when inte-
grated with a Bayesian framework, allow for an investigation of all 
the variation in G matrices among populations while taking into ac-
count uncertainty in G matrix estimates.

To examine the implications of G matrix divergence for the evo-
lutionary trajectories of the populations, we solved the multivariate 
breeder's equation and used the R metric, which predicts evolu-
tion with and without covariances (Agrawal & Stinchcombe, 2009). 
Solving the breeder's equation allows an estimation of whether the 
observed G matrices will produce different responses to selection 
when confronted with a single, empirically estimated regime of se-
lection. In contrast, the R metric evaluates whether the observed 
patterns of genetic covariances among traits will slow or accelerate 
the response to selection. We also used random skewers (Cheverud 
and Marroig, 2007), in which G matrices are multiplied by a large 
universe random selection vector (the skewer) and the vector cor-
relation or the angle of the resulting response vectors is calcu-
lated; these results are presented and discussed in the Supporting 
Information. Collectively, the approaches we implement examine 
the shared geometry of G matrices (Krzanowski), directions in mul-
tivariate space by which they diverged (fourth- order tensors), how 
they affect the response to selection (breeder's equation, skewers), 
and whether they constrain adaptation (R metric). These methods 
provide a thorough analysis of any divergences between G matrices, 
and can point to the traits underlying these differences, and the im-
plications for future responses to selection. Specific details of each 
method are outlined below.

2.8.1 | Krzanowski's common subspace analysis

Some parts of multivariate trait space will have genetic variance, 
while others will not. We can examine whether the subspaces with 
the most genetic variation are similar for multiple populations using 
the Krzanowski subspace analysis (Krzanowski, 1979). In other 
words, are the directions in multivariate space which contain the 

most genetic variance the same for each population? To find the 
subspace of most similarity among p populations (t = 1, …, 6 (in our 
case)), we used the equation: 

where matrix transposition is indicated by the superscript T, and the 
subset kt of the eigenvectors of Gt are contained in At (Aguirre et al., 
2014). The number of eigenvectors included in the summary matrix 
H is half the total number of traits that were examined (Aguirre et al., 
2014; Puentes et al., 2016). Any eigenvalues of H that are less than 
p indicate that the directions of genetic variation described by that 
eigenvector differ among populations. In contrast, eigenvalues equal 
to p indicate common subspaces— that is, directions of genetic varia-
tion that can be described by the same eigenvectors (Aguirre et al., 
2014). The advantage of the Krzanowski method is its clear bounded 
statistic, which ranges from zero (most divergent) to p (most similar) 
(Blows et al., 2004). Although this method is restricted to examining 
the subspaces of G with the most variation, they are the subspaces that 
will bias responses to selection and therefore are the most relevant to 
future adaptation (Aguirre et al., 2014). We conducted the Krzanowski 
subspace analysis both using all traits (six traits, three eigenvectors) 
and while excluding fitness traits (four traits, two eigenvectors). To test 
for significance, we compared results with those from the randomiza-
tions of phenotypes to sires and dams. To consider subspaces signifi-
cantly diverged, an H value had to be lower than p, and it had to be 
lower than the 95% HPD interval calculated from the null (randomized) 
G matrices.

2.8.2 | Genetic covariance tensor

Much as principal components can be used to define directions 
in multivariate space that contain the most variation in traits, ei-
gentensors can be used to describe differences among matrices, in 
this case, G matrices. The tensor method examines the differences 
between multiple matrices by using eigenanalyses (Aguirre et al., 
2014; Hine et al., 2009; also see Fig. 2 of Walter et al., 2018). We 
briefly describe the execution of this analysis; interested readers 
can refer to Hine et al. (2009), Aguirre et al. (2014), and Walter 
et al. (2018) for more information on the advantages of this ap-
proach and details of its implementation. A tensor of the fourth 
order is required since matrices (second order) are being compared 
(
∑

ijkl = cov(Gij, Gkl)). The tensor can be represented as the matrix S, 
containing variances and covariances of all the elements among 
the G matrices— that is, the variances and covariances of genetic 
variances and covariances (Aguirre et al., 2014; Hine et al., 2009). 
Analogous to decomposing a matrix into eigenvalues and eigenvec-
tors, the fourth- order tensor can be decomposed into eigenvalues 
and second- order eigentensors, which indicate how the G matrices 
have diverged from one another (Aguirre et al., 2014; Hine et al., 
2009). Eigentensors with larger eigenvalues describe differences 

H =

p
∑

t=1

AtA
T

t
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in the genetic variances and covariances among populations. These 
eigentensors can themselves be subjected to eigenanalysis, to de-
termine the trait combinations (eigenvectors) that lead to the dif-
ferences captured by the eigentensors (Walter et al., 2018).

The tensor method has the advantages of being compatible with 
various experimental designs and encompassing all the variation 
among matrices (Aguirre et al., 2014). Unlike some other methods 
that may underscore differences that do not easily relate back to the 
original traits, the fourth- order tensor allows for the identification 
of specific trait combinations that have different variances in the 
study populations (Aguirre et al., 2014). We used the tensor method 
on both standardized G matrices containing all six traits and just 
the four phenotypic traits, using code modified from Aguirre et al. 
(2014) and Puentes et al. (2016). To determine whether an eigenten-
sor described significant variation among populations, we again took 
advantage of the Bayesian framework (Aguirre et al., 2014). To test 
whether variation among populations was larger than what could 
be expected by random sampling error, we compared the posterior 
distribution of each eigenvalue to the distributions generated from 
the randomized (null expectation) populations (Aguirre et al., 2014; 
Careau et al., 2015; Walter et al., 2018). We considered an eigenten-
sor to encompass biologically meaningful variation among popula-
tions if the variance it explained was higher than the 95% HPD values 
calculated from the randomized G matrices (null expectations).

2.8.3 | Solving the breeder's equation

One of the primary motivations of estimating G matrices in the first 
place was to use them to predict responses to selection. The multi-
variate breeder's equation method uses selection estimates taken 
empirically to do just that. The trait responses of a population facing 
a realistic selection scenario can then be generated (Lynch & Walsh, 
1998). Solving the breeder's equation with a single selection vec-
tor can be used to compare G matrices: Do the matrices lead to sig-
nificant differences in response to an observed pattern of selection 
(Stinchcombe et al., 2009)? Significant differences between popula-
tions can be assessed by examining overlaps between the 95% HPD 
intervals of the predicted response to selection.

To implement this, we used two approaches. First, we used field 
data to obtain point estimates of the elements of β by performing a 
multiple regression of each fitness metric on the phenotypic traits 
using sire means. We used global sire means to obtain a common 
representation of the overall pattern of directional selection experi-
enced by the field experimental population (estimating selection for 
each population separately would make it impossible to distinguish 
whether differences in observed responses were due to G or the 
selection estimates). We used the first principal component of seed 
mass and total inflorescence size as a composite fitness component; 
separate analyses of male and female fitness revealed similar results 
and are not presented. In these analyses, we held β fixed at point 
estimates from the multiple regression; differences in predicted 

responses to selection thus come from differences in the G matri-
ces between each population. Each posterior sample of G in each 
population was multiplied by β to obtain a posterior distribution for 
Δ z; we compare populations by examining differences in the means 
and 95% HPD intervals of Δ z. To ensure that units were comparable, 
we performed calculations of unstandardized G matrices (units of 
traits2 for variances) and unstandardized selection gradients (units 
of traits−1) to obtain predicted responses to selection in original trait 
units. We then divided these responses to selection by the global 
standard deviation of each trait, to put each estimate of Δ z into 
comparable standard deviation units.

In the second approach, we incorporated uncertainty in our esti-
mates of β by implementing a Bayesian regression approach with the 
bas.lm function in R. We explored two priors (ZS- null and AIC), and 
found that it did not affect the results, and report results using the 
ZS- null prior. We performed 10,000 MCMC iterations to sample the 
posterior of the elements of β. We then combined a single posterior 
estimate of G with a single posterior estimate of β to estimate the re-
sponse to selection, incorporating uncertainty in both components 
parts by sampling each of them from their posterior distributions.

2.8.4 | R values: predicting evolution with and 
without covariances

Covariances between traits can have important impacts on evolu-
tionary trajectories by either constraining or accelerating adapta-
tion. If introduced populations are subject to greater constraints to 
adaptation because of genetic covariances, this should be seen in 
lower rates of adaptation due to covariances, compared with native 
populations. Agrawal and Stinchcombe (2009) developed a sum-
mary statistic to quantify the impact of covariances on the adap-
tive potential of populations. Given a level of variance, the R metric 
can evaluate the effect of correlations on the rate of adaptation. 
Evolutionary biologists have often emphasized constraint in the con-
text of genetic correlations, but in their discussion of the R metric, 
Agrawal and Stinchcombe (2009) argue this may not be warranted. 
Investigating correlations in more datasets can elucidate the preva-
lence of constraints from genetic correlations.

To implement this method, we calculated the rate of adaptation 
given the observed G matrices and constructed G matrices where 
there are no correlations between traits (i.e., all off- diagonals are 
changed to zero). The “R value” is the ratio of the two. When R > 1, 
adaptation is accelerated by covariances between traits, and when 
R < 1, adaptation is slowed down by genetic correlations.

As with the breeder's equation method, the R metric requires se-
lection gradients. We ran separate analyses for male and female fit-
ness, as well as a composite of the two, to calculate selection on the 
four nonfitness traits. To compare populations, we again took advan-
tage of the Bayesian framework and the 10,000 estimates of each G 
matrix. We compared the R values to determine whether the HPD 
intervals overlapped for each pairwise comparison of populations.
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3  | RESULTS

3.1 | Differences in means

Using a traditional MANOVA, we found that there were signifi-
cant differences between continents in the six phenotypic traits 
(F4,1531 = 41.150, p < 0.0001) and populations nested within continents 
(F6,6136 = 55.41, p < 0.0001), indicating multivariate divergence in the 
traits (Figure S1). Based on this, we considered continents and popula-
tions separately in further analyses of heritability and G matrices.

3.2 | Univariate comparisons

Heritability estimates were higher than expected from sampling 
error for almost all traits and populations (see Figure 2). In some 
cases, estimates of heritability exceeded 1, which can happen due 
to sampling error (Hill & Thompson, 1978). While the variances as-
sociated with terms in the model sum to the phenotypic variance, VA 
is 4x the sire variance, VS, and thus, narrow- sense heritabilities can 
exceed 1 after VS is multiplied by 4.

3.3 | G matrix comparisons

3.3.1 | Krzanowski's common subspace analysis

We did not see significant divergences among subspaces among popu-
lations (Figure 3). This was true both when all six traits were included 
and when we excluded the fitness traits. In other words, the subspace 
containing the majority of genetic variation for the six populations was 
common: There is no evidence of population divergence in the multi-
variate space described by the leading principal components.

3.3.2 | Fourth- order genetic covariance tensor

For the tensor analysis using all six traits and six populations, we 
found two significant eigentensors (Figure 4)— that is, two directions 
describing variation and covariation among the six G matrices. The 
first eigentensor described the majority of variation (65%) among 
the G, but there was large uncertainty in this dimension. The West 
Virginian population was the most divergent in terms of each popu-
lations’ contribution to the first eigentensor (Figure S2). The first 
eigenvector of the first eigentensor (e11) accounted for 89% of the 
variation in this eigentensor, while the second and third eigenvec-
tors explained 4% and 3.8% of the variation in the first eigentensor. 
The second eigentensor described 12% of the variation among G 
matrices. The first eigenvector of the second eigentensor accounted 
for 47.5% of the variation in this eigentensor. Altogether, the first 
three eigenvectors of the second eigentensor accounted for 82% of 
its variation.

3.3.3 | Solving the breeder's equation

Estimated selection gradients differed in magnitude but not direc-
tion depending on the fitness metric that we used (female fitness, 
male– female, or a composite of the two). Results from solving the 
breeder's equation were consistent across fitness metrics, so we 
only present those using composite fitness here (Figure 5). We ex-
amined the results of pairwise comparisons for six populations for 
responses in four nonfitness traits. Only final height showed a signifi-
cant difference in pairwise comparisons. As with the random skewers 
methods (Supporting Information), there were not more divergent 
pairs between continents compared with within continents, indicat-
ing that this result is not due to the use of a single selection gradi-
ent rather than a large universe of them. In all cases where we saw 

F I G U R E  2   Heritability estimates 
of ragweed (a) early height, (b) branch 
number, (c) final height, and (d) flowering 
time. North American populations are 
to the left of the red line (from north 
to south: MI, CB, WV), and European 
populations are to the right of the red 
line (from north to south: LH, RM, PG). 
Mean posterior estimates are shown 
in black (circles), and randomized mean 
estimates are white circles with the 95% 
intervals shown as dashed lines. For 
heritability estimates, the genetic variance 
within each population is divided by the 
phenotypic variance for that population, 
rather than for the total experiment

0.00

0.25

0.50

0.75

1.00

1.25

MI CB WV LH RM PG

Population

H
er

ita
bi

lit
y

0.00

0.25

0.50

0.75

1.00

1.25

MI CB WV LH RM PG

Population

H
er

ita
bi

lit
y

0.00

0.25

0.50

0.75

1.00

1.25

MI CB WV LH RM PG

Population

0.00

0.25

0.50

0.75

1.00

1.25

MI CB WV LH RM PG

Population

(a) (b)

(c) (d)

Early height Branch number

Final height Flowering time



1444  |     McGOEY and STIncHcOMBE

a difference between populations, one of the populations involved 
was West Virginia. While these data do not suggest significant dif-
ferences among populations in the likely response to selection, we 
did predict significant evolutionary responses in many cases. These 
data indicate that while we predict significant evolutionary responses 
(i.e., the strength of covariances do not make the predicted response 
to selection indistinguishable from zero), there is no heterogeneity 
among predictions based on populations or continent of origin.

3.3.4 | R values: predicting evolution with and 
without covariances

We observed that the point estimates of the R metric were posi-
tive: In other words, the rate of adaptation is accelerated by genetic 
covariances, relative to not having them (Figure 6). Individual point 

estimates are moderate (~1.5, where one indicates no effect of covari-
ances on adaptation), with the exception of the West Virginia popula-
tion. In this case, the point estimate is close to 3, and with uncertainty 
that does not include 1, the rate of adaptation is threefold faster with 
covariances than compared to when they were absent. In general, this 
occurs when the direction of selection and the sign of genetic covari-
ances are concordant: traits selected in the same direction when posi-
tively correlated, or in opposite directions when negatively correlated. 
As with the multivariate breeder's equation, we failed to see any con-
sistent differences between the native and invasive range.

4  | DISCUSSION

Invasive species are an important component of anthropogenic 
global change (Simberloff, 2014). Invasion genetics examines the 
importance of genetic factors in determining the trajectory that 
an invasion will take (Barrett, 2015). Most traits that will be impor-
tant for a response to selection in new habitats will be quantitative 
(Dlugosch & Parker, 2008a; Estoup et al., 2016), which has led to 
numerous calls for invasion research from a quantitative genetics 
perspective (Bacigalupe, 2009; Lawson Handley et al., 2011) and 
direct comparisons of additive genetic variance between native 
and introduced populations (Barrett, 2015). We used a common 
garden experiment paired with multivariate Bayesian analyses 
of additive genetic (co)variation to compare the quantitative ge-
netic architecture for native and introduced ragweed populations. 
While we found some differences in phenotypic traits and their 
genetic variances, the dominant picture that emerges is that G ma-
trices of introduced populations were not significantly or homoge-
neously diverged from native populations of ragweed. We found 
that introduced populations did not have lower additive genetic 
variance or diminished adaptive capacity when compared to native 
populations. Below we discuss the implications of these results for 
understanding ragweed's invasion in particular, and more gener-
ally the stability of G through space and time.

F I G U R E  3   Results from the Krzanowski analysis using only the four phenotypic traits (early height, final height, branch number, and 
flowering time) (a) and including estimates for male and female fitness (b). The eigenvalues (mean and 95% HPD interval) of each of the 
first two (a) or three (b) eigenvectors of H are shown for the observed (closed circle, solid lines) and randomized (open circles, dashed lines). 
Values closer to 6 (the number of populations compared) indicate greater similarity in multivariate directions of genetic variation
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F I G U R E  4   Results of tensor analysis of G matrices for six 
A. artemisiifolia populations. Eigenvalues of eigentensors for 
posterior mean S (the covariance matrix representing the fourth- 
order covariance tensor). The amount of variance (alpha) accounted 
for by each eigentensor is shown for G matrices of the six 
observed (solid circle) and randomized (dashed line and open circle) 
populations. The error bars are the 95% HPD intervals generated 
using 500,000 MCMC total iterations for 1000 randomized 
phenotypes
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4.1 | Quantitative variation and ragweed invasion

Invasive species represent a major global economic and ecological 
concern (Pimentel et al., 2005). The field of invasion biology origi-
nally emerged from community ecology and emphasized ecologi-
cal indicators over evolutionary aspects of introduced populations 
(Davis, 2010). Treating invasive species as static entities may lead to 
poor predictions on how invasions will proceed (Whitney & Gabler, 
2008) since evolutionary change occurs on ecological timescales 
(Thompson, 1998). Understanding the role that evolutionary fac-
tors, such as genetic diversity, play in the invasion process is impor-
tant to our ability to assess and contain invasions (Sakai et al., 2001).

Like many weedy plants, common ragweed has benefited im-
mensely from anthropogenic changes to natural landscapes (Bassett 
& Crompton, 1975; Lavoie et al., 2007). Ragweed is thought to be na-
tive to the plains of North America but has spread across the globe 
(Bassett & Crompton, 1975). Humans are implicated in every step of 
this process, from physically transporting it across oceans as a grain 
contaminant, to constructing roads, to providing consistent distur-
bances, which allow ragweed (an otherwise poor competitor) to 
persist (Chauvel et al., 2006; Kiss & Béres, 2006; Lavoie et al., 2007; 
MacKay & Kotanen, 2008). Recent anthropogenic climate change has 
extended the growing season for ragweed (Ziska et al., 2011). The con-
sequences of ragweed invasion in Europe are multipronged, including 
impacts on human health, agricultural productivity and ecological in-
tegrity (Buttenschøn et al., 2010; Chauvel et al., 2006). It has been 
highlighted as a weed of particular concern, with much effort devoted 
to research on its spread and eradication effort (Pinke et al., 2011).

Ragweed appears to have evolved rapidly in its introduced range, 
and our results suggest that it has sufficient quantitative genetic 
variation for adaptation in traits that could allow further expansion 
of its range and abundance in Europe. Clines in flowering time and 
reproductive biomass, and a high QST (vs FST) value for reproductive 
allocation suggest that ragweed has locally adapted across Europe 
(Chun et al., 2011; Hodgins & Rieseberg, 2011; McGoey et al., 2020; 
van Boohemen et al., 2018; van Boheemen & Hodgins, 2020). Our 
results illustrate that the combination of introduction, founder 
events, and recent adaptation has not reduced quantitative genetic 
variation relative to source populations: Introduced populations had 
neither lower heritabilities nor divergent G matrices, nor greater 
evolutionary constraint due to genetic covariances. Like many other 
studies, there was reasonable uncertainty around our G estimates, 
which is a potential qualifier on our conclusion that there is minimal 
divergence in the G matrices between populations (Puentes et al., 

F I G U R E  5   Predicted response to 
selection for final height predicted by 
solving the breeder's equation for six 
ragweed populations (three native (MI, 
CB, and WV) and three introduced (LH, 
RM, and PG)). Final height is shown in 
standard deviation units
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2016). Power and sample size challenges are inherent to the G ma-
trix approach. In addition to large uncertainty due to estimation of 
sire variances (rather than characterizing individual- level traits with 
much greater sample sizes), the multivariate framework introduces 
many more variances and covariances to be estimated, a challenge 
that gets harder with each additional trait considered (parameters 
estimated = n × n+ 1

2
 for n traits).

The quantitative genetic variation we found is especially concern-
ing given that ragweed also has several characteristics recognized 
as advantageous for invasion. Ragweed has a short generation time, 
small propagule size, and high propagule pressure, all of which will 
facilitate its spread (Dormontt et al., 2010; Novak, 2007; Whitney & 
Gabler, 2008). Outcrossing introduced plants with substantial genetic 
variation has the capacity to rapidly adapt to their new circumstances 
(Colautti & Barrett, 2013). The traits we focused on size, timing, and 
architecture traits are likely critical to the ability of ragweed to con-
tinue its range expansion in Europe. Both native and invasive ranges 
appear to be restricted by phenology (Chapman et al., 2013). Genetic 
variation for size and flowering time is critical to the ability of invasive 
species to establish and spread (Colautti & Barrett, 2013). The spread 
of ragweed has been facilitated by railroads and highways, which act 
as both corridors and habitat (Kiss & Béres, 2006; Lavoie et al., 2007). 
Together, the interconnectedness of Europe and the high levels of ge-
netic variation already on the continent could accelerate the spread of 
ragweed into new areas. Eradication efforts of ragweed populations 
must take into account the likelihood of adaptation in response to any 
interventions and should never treat invasive populations as static.

4.2 | Divergences between G matrices and their 
implications

Evolutionary biologists have long held an interest in the stability of G 
over space and time, since the ability to predict evolutionary trajec-
tories are contingent on G matrix consistency (Arnold et al., 2008). 
G matrices will be impacted by mutation, selection, drift, recombina-
tion and migration (Arnold et al., 2008). The complexities of all these 
forces interacting have meant that theoretical predictions for how G 
will change over time have been intractable and the dynamics of G 
must be studied empirically (Revell, 2007; Turelli, 1988). There have 
been several empirical and simulation studies on the stability of G, 
but results are equivocal, and the difficulty in rigorously estimating 
one G matrix, let alone multiple G matrices, has meant that we do not 
yet have a clear picture of how G varies in space and time (Aguirre 
et al., 2014; Arnold et al., 2008; Delahaie et al., 2017). The advent of 
statistical methods that allow for rigorous comparison of multiple G 
matrices— while accounting for uncertainty in each— has increased 
the impetus and utility of more empirical research on G matrix vari-
ability (Delahaie et al., 2017). Despite their importance, studies of 
G matrix variation remain rare, especially for nonmodel organisms 
(Cano et al., 2004; Delahaie et al., 2017) and spatial variability is even 
less well explored than changes through time (Puentes et al., 2016).

Introduced populations could face two main forces that could 
shift G when compared to native populations. First, a bottleneck 

could cause a shift in the genetic architecture (Whitlock et al., 2002). 
Second, the populations could face strong selection, which could 
alter G (Arnold et al., 2008). The invasion of ragweed into France has 
been characterized by multiple introductions and admixture (Genton 
et al., 2005; van Boohemen et al., 2017). Molecular markers show 
an equivalent or greater diversity in the introduced range, when 
compared to the native range (Genton et al., 2005; Li et al., 2012; 
McGoey et al., 2020). However, the absence of a bottleneck de-
tected from neutral makers does not mean there could not be shifts 
in quantitative genetic architecture: Neutral markers are not useful 
as proxies for quantitative genetic variation (Mittell et al., 2015; 
Reed & Frankham, 2001). For example, Eroukhmanoff and Svensson 
(2011) investigated differences in the G matrices of two ecotypes 
of aquatic isopods. In two different lakes, the isopods have colo-
nized a new habitat in the last few decades. While Eroukmanoff and 
Svensson (2011) found no difference in neutral genetic variation, ad-
ditive genetic variance decreased by nearly 50% (Eroukhmanoff & 
Svensson, 2011). Likewise, we cannot use neutral markers to assess 
adaptive potential. In their study of Hypericum canariense, Dlugosch 
and Parker (2008b) found rapid adaptation of important life history 
traits in invasive populations, despite large bottlenecks and low mo-
lecular genetic diversity.

Our findings, along with past studies (Hodgins & Rieseberg, 
2011), reveal genetic differentiation for mean values of quantitative 
traits in ragweed's introduced range, consistent with divergent di-
rectional selection since colonization. There have also been multiple 
introductions from different source populations, with the potential 
to cause shifts in G due to waves of migration. Ragweed's habitat 
preference for recently disturbed sites suggests that the species 
often experiences frequent bottlenecks in both its native and intro-
duced ranges, which could introduce periodic bottlenecks to all pop-
ulations. The effects of regular bottlenecks might be ameliorated by 
its prodigious pollen production, wind pollination with wide pollen 
dispersal, and outcrossing mating system. Despite the different evo-
lutionary forces introduced ragweed populations have faced, all of 
which could have contrasting effects on levels of quantitative ge-
netic variation, their G matrices have not substantially diverged from 
those of native populations. It may be that the interplay between 
these forces and the genetic architectures of complex traits such 
as size and phenology leads to a relatively stable G; alternatively, it 
may be that species such as ragweed become invasive because they 
have a relatively stable G that can lead to responses to selection new 
ranges despite the interplay of these forces.

We used a variety of methods to assess the magnitude of G 
matrix differences for native and introduced ragweed populations. 
Overall, the G matrices are largely stable across geography, con-
sistent with studies on other taxa that have also found similarity in 
G across conspecific populations. While we did find some moder-
ate differences between G matrices, most differences seem to be 
driven by the West Virginian population, which was highlighted by 
several of the analyses as a divergent population. Differences were 
not more apparent between populations from different continents 
than those from the same range. When confronted with the same 
selection scenario, responses of introduced populations would not 
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be more different from native populations than from each other. 
There are too few studies of G matrix variability among populations 
for broad patterns to emerge, but past authors have argued that G 
matrices are stable across geography (Arnold et al., 2008; Delahaie 
et al., 2017), and our results are consistent with that interpretation.

5  | CONCLUSION

It is increasingly appreciated that evolutionary factors are impor-
tant in the invasion process and that there is value in approaching 
the study of invasive species from a quantitative genetics perspec-
tive. Data on the adaptive potential of wild populations are scarce 
(Delahaie et al., 2017), but are necessary to understanding evolution 
in natural environments.

We used a multivariate Bayesian approach and found that intro-
duced A. artemisiifolia populations are not limited in their adaptive 
potential when compared to native populations. Importantly, the 
availability of additive genetic variance seen here indicates that rag-
weed will be able to respond to selection pressures in the introduced 
range, whether from novel selection, global change, or eradication 
efforts. Combined with its annual life history and prolific production 
of seeds, ragweed is primed to adapt rapidly to selection pressures 
that arise in its introduced range.
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