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Abstract 

 

Although much of what we know about the genetic basis of herbicide resistance has come from 

detailed investigations of monogenic adaptation at known target-sites, the importance of 

polygenic resistance has been increasingly recognized. Despite this, little work has been done to 5 

characterize the genomic basis of herbicide resistance, including the number and distribution of 

involved genes, their effect sizes, allele frequencies, and signatures of selection. Here we 

implement genome-wide association (GWA) and population genomic approaches to examine the 

genetic architecture of glyphosate resistance in the problematic agricultural weed, Amaranthus 

tuberculatus. GWA correctly identifies the gene targeted by glyphosate, and additionally finds 10 

more than 100 genes across all 16 chromosomes associated with resistance. The encoded 

proteins have relevant non-target-site resistance and stress-related functions, with potential for 

pleiotropic roles in resistance to other herbicides and diverse life history traits. Resistance-related 

alleles are enriched for large effects and intermediate frequencies, implying that strong selection 

has shaped the genetic architecture of resistance despite potential pleiotropic costs. The range of 15 

common and rare allele involvement implies a partially shared genetic basis of non-target-site 

resistance across populations, complemented by population-specific alleles. Resistance-related 

alleles show evidence of balancing selection, and suggest a long-term maintenance of standing 

variation at stress-response loci that have implications for plant performance under herbicide 

pressure. By our estimates, genome-wide SNPs explain a comparable amount of the total 20 

variation in glyphosate resistance to monogenic mechanisms, indicating the potential for an 

underappreciated polygenic contribution to the evolution of herbicide resistance in weed 

populations.  

 

 25 

Introduction 

 

In theory, it should be easy to understand the genetic basis of herbicide resistance in weeds, 

because herbicides typically intentionally target a known biochemical pathway, and specific 

genes or gene products.  In practice, however, herbicide resistance in evolved weed populations 30 

is complex. Agricultural weed populations evolve cross-resistance to multiple “modes” of 
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herbicides (distinct classes of herbicides designed to target select pathways) not only through-

well characterized, large-effect mutations that alter the interaction of the herbicide with the target 

enzyme (target-site resistance, TSR), but also through other mutations across the genome (non-

target-site resistance, NTSR), often with smaller individual effects (Délye, 2013; Kreiner, 35 

Stinchcombe, & Wright, 2018; Tranel, Riggins, Bell, & Hager, 2011). While much work has 

been done to elucidate causative TSR mutations and their frequency in experimental and natural 

weed populations (Heap, 2010), we know little about the number of loci involved and the 

associated distribution of allelic effect sizes, frequencies, and the fraction of phenotypic variance 

explained by NTSR herbicide resistance loci. Here we combine genome-wide association 40 

approaches with population genomics to dissect the genetic architecture and genomic context of 

glyphosate resistance.  

 

Efforts to better characterize the genetic basis of NTSR will help discover genetic markers for 

managing the spread of resistance. With a catalogue of genome-wide allelic effects on resistance, 45 

GWA methods can inform prediction of how populations, based on their genetics, may respond 

to selection from future herbicide pressures.  More broadly, understanding the genetics of NTSR 

will contribute to our understanding of the relative importance and consistency of small- and 

large-effect alleles contributing to rapid adaptation, while also shedding light on how strong 

selection shapes genome-wide variation of natural weed populations. 50 

 

It is likely that NTSR is as prevalent as TSR in conferring herbicide resistance across 

agriculturally important ranges (e.g. (Delye, Gardin, Boucansaud, Chauvel, & Petit, 2011)). 

Several studies have looked for causative mutations in the gene encoding the herbicide-targeted 

protein, but failed to find one—implying a widespread role of small effect mutations conferring 55 

resistance in these populations (Délye, 2013; J. Guo et al., 2015; Van Etten, Lee, Chang, & 

Baucom, 2019; Van Horn et al., 2018). In contrast to a single large-effect TSR allele, which is 

often likely to have arisen de novo, the polygenic basis of resistance with many small-effect 

alleles is likely to draw from genome-wide standing genetic variation (Kreiner et al., 2018; Neve, 

Vila-Aiub, & Roux, 2009). Thus NTSR mechanisms may even allow for naive populations to 60 

have some level of standing variation for resistance to herbicides. NTSR is a challenge for 

management not only because of its mysterious genetic basis and possible presence in naive 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 20, 2020. . https://doi.org/10.1101/2020.08.19.257972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

populations, but also due to pleiotropic effects of resistance alleles conferring cross-resistance to 

multiple herbicide modes (Preston, 2004; Preston, Tardif, Christopher, & Powles, 1996; Yu, 

Abdallah, Han, Owen, & Powles, 2009; Yu, Cairns, & Powles, 2007). With increased incidence 65 

of cross-resistance within individuals and populations (Heap, 2010), combined with reactive 

management through applications of tank mixes of different classes of herbicides, NTSR is likely 

to only increase in importance and prevalence. 

 

A handful of gene families—encoding enzymes such as cytochrome P450s monooxygenases, 70 

glycosyltransferases, and glutathione S-transferases, or ABC transporters—have been repeatedly 

implicated in conferring NTSR, especially through the action of differential gene expression 

(Yuan, Tranel, & Stewart, 2007). These NTSR genes act by altering herbicide penetration, 

translocation, accumulation at the target site, as well as through offering protection from 

herbicide effects, the expression of which can be constitutive or induced (Délye, 2013; Moretti et 75 

al., 2018). Many examinations of potential NTSR genes have employed differential gene 

expression approaches, and several studies have successfully identified putative, diverse NTSR 

genes in such a manner (e.g. (Busi, Porri, Gaines, & Powles, 2018; I. Cummins, Cole, & 

Edwards, 1999; Duhoux, Carrère, Duhoux, & Délye, 2017; Duhoux, Carrère, Gouzy, Bonin, & 

Délye, 2015; Küpper, Peter, et al., 2018; W. Liu et al., 2018; Nakka et al., 2017; Pan et al., 2019; 80 

Peng et al., 2010; Varanasi, Brabham, & Norsworthy, 2018; N. Zhao et al., 2019)). Nonetheless, 

the genomic, rather than transcriptomic, basis of NTSR is unknown in most species and for most 

classes of herbicides (but see ((Ian Cummins et al., 2013; Van Etten et al., 2019).  

 

While increasingly the genetic repeatability of herbicide resistance is being investigated with 85 

genomic approaches (Flood et al., 2016; Kreiner et al., 2019; Küpper, Manmathan, et al., 2018; 

Leslie & Baucom, 2014; Molin, Wright, Lawton-Rauh, & Saski, 2017; Van Etten et al., 2019), 

traditional genome-wide association (GWA) approaches have yet to be applied to explicitly 

characterize the genetic architecture of herbicide resistance, and the repeatability of alleles 

implicated across populations (but for related approaches, see (Benevenuto et al., 2019; Van 90 

Etten et al., 2019)). In other systems, GWAS have been widely and successfully used to identify 

new candidate genes, characterize the architecture of key traits, make predictions about 

phenotypes in studied and novel populations, and inform breeding strategies through genomic 
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selection (e.g. (Bock, Kantar, Caseys, Matthey-Doret, & Rieseberg, 2018; Epstein et al., 2018; 

Exposito-Alonso et al., 2019, 2018; Spindel et al., 2015; Swarts et al., 2017)).  95 

 

Glyphosate based herbicides, commonly referred to by the brand name Round-upTM, are widely 

used across North America to suppress weed populations, especially in soy and corn fields. 

Glyphosate, which targets a step in the synthesis of aromatic amino acids, carried out by 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), was commercialized in the 1970s with 100 

widespread deployment of glyphosate-resistant crops nearly 20 years later (W. G. Johnson, 

Davis, Kruger, & Weller, 2009). Since then, the incidence of glyphosate resistance (combined 

with multiple-resistance to other modes of herbicides) has increased exponentially, and is third to 

only ALS-inhibiting and Photosystem II-inhibiting herbicides in the number of resistant species 

(Heap, 2010). Meanwhile, glyphosate herbicides are still the most widely used across North 105 

America—hinged on low operational costs and glyphosate-resistant cropping systems—despite 

ubiquitous resistance in weed populations, especially in the genus Amaranthus (Duke & Powles, 

2008; Vencill, Grey, Culpepper, Gaines, & Westra, 2008).  

 

Amaranthus tuberculatus has been investigated by weed scientists for decades due to its 110 

problematic nature in agricultural fields and increasing reports of multiple-resistance (Bell, 

Hager, & Tranel, 2013; Bernards, Crespo, Kruger, Gaussoin, & Tranel, 2012; Matthew J. Foes, 

Tranel, Loyd M. Wax, & Edward W. Stoller, 1998; Patzoldt & Tranel, 2007; Patzoldt, Tranel, & 

Hager, 2002, 2005; Shergill, Bish, Jugulam, & Bradley, 2018; Tranel et al., 2011). More 

recently, a variety of genomic resources (a high quality reference genome, large resequencing 115 

dataset, phenotyping for glyphosate resistance) have been assembled (Kreiner et al., 2019), 

building on earlier efforts (Lee et al., 2009; Riggins, Peng, Stewart, & Tranel, 2010)). Recently, 

we characterized population structure, demographic history, and signals of monogenic selection 

at EPSPS and its related amplification in response to glyphosate, across natural and agricultural 

populations (Kreiner et al., 2019). With reports of non-target site resistance to glyphosate in the 120 

species (Nandula, Ray, Ribeiro, Pan, & Reddy, 2013), we next sought to identify genome-wide 

signals of adaptation to herbicides. 
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In this study, we implemented GWA and population genomic approaches for characterizing the 

genetic architecture of glyphosate resistance in Amaranthus tuberculatus. We used linear mixed 125 

models to identify new putative NTSR genes in addition to accurately identifying known, key 

large effect genes (TSR loci), and assess their relative importance. Our GWA for resistance to 

glyphosate in Amaranthus tuberculatus shows the largest genome-wide peak on chromosome 5 

near the known-target, EPSPS. However, several other alleles show genome-wide significance 

after correcting for multiple testing (FDR), population structure, and after comparing to the 130 

permuted null-expectation. Genes encompassing these SNPs have relevant NTSR-related 

functions, and several candidates have been previously implicated in response to stress and 

herbicides. Furthermore, the associated SNPs are enriched for common alleles, large effects, and 

signals of selection. Our results imply a genetic architecture of NTSR resistance that makes use 

of both common alleles shared across populations and of rare population-specific alleles, with 135 

evidence of long term balancing selection being responsible for their diversity across 

populations. 

 

 

Materials & Methods 140 

 

Amaranthus tuberculatus resequencing & phenotype data 

Resequencing and phenotype data were obtained from a published study (Kreiner et al., 2019), 

which included a high-quality female reference genome for the species. Whole-genome Illumina 

sequencing data are available at  European Nucleotide Archive (ENA) (project no. PRJEB31711) 145 

(Kreiner, Giacomini, Bemm, Waithaka, Regalado, Lanz, Hildebrandt, Sikkema, Tranel, Weigel, 

Stinchcombe, Wright, 2019b), and the reference genome and its annotation available at CoGe 

(reference ID = 54057) (Kreiner, Giacomini, Bemm, Waithaka, Regalado, Lanz, Hildebrandt, 

Sikkema, Tranel, Weigel, Stinchcombe, Wright, 2019a). There were 158 agricultural samples, 

collected from 8 fields with high A. tuberculatus densities across Missouri and Illinois in the 150 

Midwest United States, and from newly infested counties in Ontario, Canada, Walpole Island 

and Essex. Lastly, 10 samples from naturally occurring, non-agricultural Ontario populations 

were included, totaling 168 resequenced samples.  
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As described in (Kreiner et al., 2019), phenotyping for glyphosate resistance was performed from 155 

offspring of field-collected specimens, and the same individuals were used for resequencing. 

Three weeks after a glyphosate application of 1,260 g glyphosate (WeatherMax 4.5 L; 

Monsanto) per hectare, plants were rated for resistance on a scale of 1 to 5 based on a visual 

scale of injury. We represented resistance as a continuous trait in our GWAs (i.e. the 1-5 scale), 

as continuous heritable variation in resistance has been previously reported (Holliday & Putwain, 160 

1980; Patzoldt et al., 2002). 

 

Linear mixed GWA models & preprocessing & GO enrichment 

Filtered VCFs were obtained from (Kreiner et al., 2019) for all analyses. Briefly, freebayes-

called SNPs were filtered based on missing data (>80% present), repeat content, allelic bias 165 

(<0.25 and >0.75), read paired status, and mapping quality (> Q30). Six individuals were 

removed due to excess missing data, leaving 162 for baseline analyses. Further investigations 

into identity-by-descent in these 162 samples showed some individuals with particularly high 

levels of relatedness, some of which was unaccounted for even when including a relatedness 

matrix in genome-wide association tests. We thus removed another 7 individuals, resulting in a 170 

final sample size of 155. A table of individuals by population, region, and their associated 

resistance-related phenotypes are included in the supplementary (Sup. Table 1). 

 

We implemented several linear mixed model genome-wide association tests, and iteratively 

included two covariates with a causal genetic basis of glyphosate resistance. The first was a TSR 175 

mutation of proline to serine at codon number 106 in EPSPS (P106S). The second was the 

magnitude of the copy number of EPSPS (as characterized in (Kreiner et al., 2019)), based on the 

ratio of local coverage within the EPSPS gene to the median of genome-wide coverage. We did 

so in GEMMA (Zhou & Stephens, 2012), using the lmm -4 option and after estimation a 

kinship/relatedness matrix (-gk), with covariates specified (-c option) when relevant. Model 180 

selection was done holistically, by interpreting MLE, inflation factor for false positives and false 

negatives in qq plots, percent variance explained (PVE) by SNPs, and comparison of unpruned 

and LD-pruned SNP sets. We employed both a Bonferroni correction and an FDR approach to 

significance testing in R through the function p.adjust (method=”bonferroni”, “fdr”), where we 

used a false discovery rate of 𝛼 = 0.05. To calculate the significance thresholds, we took the raw, 185 
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-log10(p-value) equivalent to a q-value (FDR corrected p-value) < 0.05. While we show both, we 

used the FDR cutoff for significance testing as Bonferroni correction can often be overly 

conservative in a GWAS setting due to the assumption of independence between tests (R. C. 

Johnson et al., 2010), especially true in our case as we chose to not implement LD thinning.  We 

only present results from the unpruned dataset here, as we found that LD-pruned sets generally 190 

had an excess of false negatives. To evaluate how well our best model (+TSR) did in accounting 

for variance in resistance due to EPSPS copy number, we estimated the r2 of a regression of 

EPSPS copy number on genotypes of the 34 SNPs that fall within the EPSPS amplification and 

that are significantly correlated with resistance.  

 One challenge of interpreting GWAS analyses with covariates is that the percent variance 195 

explained (PVE) is calculated after the effects of the covariates are removed, making it hard to 

quantitatively compare the magnitude of the covariate’s effects with SNP effects. As a point of 

comparison, we estimated a multiple regression model of glyphosate resistance ratings on TSR + 

EPSPS copy number. The overall model r2 gives an indication of how much variation in 

resistance is accounted for by these monogenic effects, with 1- r2 representing (approximately) 200 

the residual variances. We then took the residuals of this regression, after adding the mean 

resistance value to each observation to retain the same scale, and used it as our focal trait in a 

GWA—this should allow us to infer the percent of variance explained in phenotypic resistance, 

independent of monogenic mechanisms. In particular, it should allow us to infer the relative 

importance of monogenic to polygenic mechanisms by taking ((1-monogenic r2) x Residual 205 

PVE) as the total amount of variance in phenotypic resistance explained by polygenic 

mechanisms.  

 

We evaluated enrichment of and the roles of our significant SNPs (after controlling for 

relatedness and multiple test correction, FDR at the level of 𝛼 = 0.05) in PANTHER GO-Slim 210 

molecular functions, biological processes, cellular components, and protein classes. To do so, we 

identified Arabidopsis thaliana orthologues in the annotated female Amaranthus tuberculatus 

reference genome using OrthoFinder (Emms & Kelly, 2015) (as in (Kreiner et al., 2019)). Genes 

with significant SNPs where no A. thaliana orthologs were identified through orthofinder were 

manually curated from the reference genome annotation file (which was curated with annotations 215 

from several species to identify known genes, (Kreiner et al., 2019)). Finally, the set of manually 
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curated and OrthoFinder A. thaliana orthologues were used to evaluate molecular function and 

test for enrichment of particular gene classes in Panther GO-Slim. Enrichment of significant 

SNPs for all Panther categories was analyzed using a Fisher's exact test and FDR correction.  

 220 

GWA permutations 

To generate a null distribution of expected significant hits, and as a point of comparison for 

downstream population genetic analyses, we randomized phenotype with respect to genotypes. 

For permuted models that included covariates, we randomized the phenotype of interest and 

covariates together with respect to SNP genotypes, such that the associations between the 225 

resistance and covariates were maintained. We generated 250 sets of randomized data, and ran a 

GEMMA GWA on each randomized set.  To generate null distributions of the expected number 

of significant SNPs, we used the significance threshold (q value < 0.05) estimated from each of 

the equivalent, observed GWAS models. From these iterations, we then calculated the average 

number of significant SNPs per permutation to get the FDR. For illustrative purposes, and to 230 

compare to the observed distribution of our true GWAS, we plotted the distribution of various 

statistics for all significant SNPs across all permuted GWASs (i.e., in Fig 3). For significance 

testing, we resampled the total pool of significant SNPs across all permuted GWASs to the same 

number of observations we observed in our true GWAS (or when relevant, the non Scaffold-5 

SNP set), 1000 times. Each time, we took the median (or mean) of various statistics, and then the 235 

5 and 95% quantile to attain the 95% CI of the empirical null distribution. To test whether there 

was enrichment compared to the null expectation, we then compared these CIs to the median (or 

mean) of these same statistics for the observed GWAS. 

 

Summary statistics 240 

We estimated Fst on a per-site basis for our set of putative NTSR alleles and genome-wide loci 

using VCFtools. To estimate Fst among resistant and susceptible individuals, we reclassified 

resistance as a binary trait (with individuals ≥ 2 on a scale of 1 to 5 classified as resistant) and 

calculated a per-site Weir-Cockerham Fst (Weir & Cockerham, 1984) among groups. For 

permuted sets, we made sure to calculate FST among groups of randomly assigned resistant and 245 

susceptible individuals. For 0-fold and 4-fold diversity in 10 kb windows around focal alleles, we 

used VCFtools per-site diversity estimates on VCF files containing variant and invariant 0-fold 
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or 4-fold sites, inferred in (Kreiner et al., 2019). Statistics for genomic windows were estimated 

with custom dplyr functions.  

 250 

We also calculated two haplotype-based statistics, extended haplotype homozygosity (EHH, 

(Sabeti et al., 2002) and the integrated haplotype score (iHS). Both EHH and iHS are/can be 

calculated with respect to the alternate (1) and reference (0) allele haplotypes in selscan (Szpiech 

& Hernandez, 2014), and so to make these statistics specific to resistant versus susceptible 

comparison, we swapped allele assignment (1 versus 0) only for SNPs that had a negative effect 255 

on resistance, such that all 1 alleles correspond to alleles with positive effects on resistance. Both 

EHH and IHS calculations require phased haplotypes and a genetic map, and therefore we called 

phased haplotypes in SHAPEIT (Delaneau, Zagury, & Marchini, 2013), and estimated the 

population-based LD map using LDhat (McVean & Auton, 2007) (as in (Kreiner et al., 2019)). 

iHS calculations build on EHH by taking the difference in the EHH-distance curve among 260 

haplotypes and standardizing for allele frequency in bins across the genome, where haplotypes 

are differentially defined based on where EHH becomes < 0.05. To encompass all significant 

SNPs, we lowered the minor allele threshold to 0.01, as opposed to the default 0.05. Finally, we 

ran the program norm, implemented in selscan, to obtain the standardized iHS, which takes into 

account the genome-wide expected iHS value given a certain allele frequency. All custom scripts 265 

are available at https://github.com/jkreinz/NTSR-GWAS-MolEcol2020. 

 

Results 

 

SNPs and Traits 270 

Our final SNP set from 155 A. tuberculatus individuals included 10,279,913 SNPs across 16 

chromosome-resolved scaffolds. Of these, 8,496,628 SNPs were used by GEMMA, after sites 

with > 5% missing data and an allele frequency <1% were removed.  The final dataset 

encompassed individuals with a range of resistance levels, EPSPS copy number, and a modest 

representation of TSR individuals. Of all individuals, 81 were classified as glyphosate resistant 275 

(a rating of ≥2 on a scale of 1-5) and 74 as susceptible (note that the continuous rate scale was 

used as input for the GWAS). Ten out of 155 individuals had a TSR mutation in the EPSPS 

coding sequence, while variance in EPSPS copy number was prevalent: 79 individuals had a 
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copy number ≤1.5, and the copy number in 76 individuals exceeded 1.5 (medians of 1.13 and 

5.95 copies, respectively) with one individual ranging up to 30.  280 

 

Gemma Linear Mixed Models 

We compared four GWAS mixed effect models, all of which included a random effect kinship 

matrix but differed in the presence of fixed effect covariates: no covariates, TSR in the EPSPS 

coding region, EPSPS copy number, and both TSR and copy number changes (Table 1). 285 

Including covariates in a GEMMA model removes the effect of the covariate on the response 

variable before estimating SNP effects, and effectively makes the PVE the percent of residual 

variance explained by genome-wide SNPs (Zhou, Carbonetto, & Stephens, 2013). Accordingly, 

whether covariates were included in the model or not markedly altered its outcome. While the 

maximum likelihood estimate improved with the addition of covariates (TSR+Copy Number > 290 

Copy Number > TSR > no covariates), so did the inflation factor (lambda), indicating the typical 

trade-off between under- and overfitting. The ranking of significant SNPs based on q-values 

corresponding to a FDR of 5% suggested that a model including both covariates yielded the most 

significant hits, however this also corresponded with an estimated FDR more than 5-times higher 

than the TSR model (Table 1, see permuted median FDR). In contrast, the “Copy number” 295 

model seems to be underpowered (excess of false negatives) and simultaneously inflated for 

false positives. Only 17 SNPs pass the FDR correction genome wide, with a lambda of 1.07 and 

a qq plot that shows early departure from the observed:expected 1:1 line at -log10(p) = 2 (Fig. 1, 

Table 1). Models that include “Copy number” as a covariate have the lowest explained PVE and 

atypical qq plots in terms of an enrichment of observed/expected p values just at the outer tail, as 300 

opposed to the model TSR and without covariates.  

 

The GWA models without covariates and with TSR are the best in terms of an enrichment of 

observed, high -log10(p-value) sites, a critical factor for the identification of candidate loci and 

phenotypic prediction (Table 1). The TSR model has 196 significant SNPs after correction, 305 

compared to 91 SNPs in the model without covariates. Despite a slight increase relative to the 

covariate free model, the TSR model is only estimated to have a 2.5% FDR (5/196 significant 

SNPs being false discoveries) and thus remains conservative for both variant discovery and 

phenotypic prediction (Table 1). We will therefore refer predominantly to the TSR model for 
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further investigation of candidate genes and genetic architecture of resistance. However, it is 310 

important to note that by not having EPSPS copy number as a covariate in our focal models we 

expect that our SNP effects will include SNPs associated with gene copy amplification at this 

locus. 

  

Table 1. GWA results from four linear mixed models varying in their fixed effects, based on the 315 
same genome-wide SNP set & kinship matrix as a random effect.  

Covariates -log10(p)  
corresponding 
to q = 0.05 

# Sig. 
SNPs  
@ 
FDR 

PVE 
(SE) 

MLE Lambda (95% 
CI) 

Permuted 
FDR estimate 

None 6.4 91 0.388 
(0.230) 

-268 0.979  
(0.972, 0.986) 

0.011 (1/91) 

TSR 6.0 196 0.492 
(0.238) 

-264 0.983  
(0.976, 0.990) 

0.025 (5/196) 

Copy Number 7.7 17 0.282 
(0.197) 

-245 1.073  
(1.065, 1.081) 

0.059 
(1/17) 

TSR + 
Copy Number 

5.6 573  0.374 
(0.219) 

-234 0.979 
(0.971, 0.986) 

0.131 (75/573) 

Fig 1. QQ plots of GWA results from four linear mixed models, varying in their fixed effects.  
 
 

Distribution of genome-wide associations & PVE 320 

 

The qualitative pattern of genome-wide associations with glyphosate resistance are similar 

among the covariate free and TSR model (Fig. 2). Zooming in on scaffold 5 of the genome 

assembly, in the center of which EPSPS is located (Kreiner et al., 2019), a butte of significant 

SNPs appears within the confines of the EPSPS-related amplification (Fig. 2b). These hits are 325 

not only localized to the 7 Mb extended region of EPSPS amplification —reassuringly, SNPs 
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significantly associated with glyphosate resistance are found directly within EPSPS. In both 

models, the EPSPS containing scaffold 5 shows the greatest number of significant SNPs across 

all scaffolds, almost four times more than any other in the TSR model (Fig. 2c). Thus, despite 

not including EPSPS copy number in our final model, variance in resistance related to this 330 

amplification appears to be accounted for. Indeed, the 34 significant resistance-associated SNPs 

that fall within the amplification can explain 76% of the variation in EPSPS copy number in a 

multiple regression framework (F21,106 = 16.03, p < 2.2e-16). 

 

Although many significant SNPs fall within the EPSPS amplification (34/196) and two even 335 

within the EPSPS gene itself, our most significant SNP genome-wide is not located within 

EPSPS or the region of extended EPSPS amplification (Fig 2a,b). The two most significant 

SNPs genome-wide are ~ 7 Mb downstream of EPSPS and ~2 Mb downstream of the region of 

extended EPSPS amplification, respectively (Fig. 2b). It is in principle possible that this locus is 

linked to EPSPS, and better reflects expected signals of  association at a diploid locus, compared 340 

to the high-copy number region within the EPSPS-related amplification. Alternatively, these 

SNPs may be linked to other loci with direct effects on glyphosate resistance, as these two SNPs 

tag CYP76C6, one of three cytochrome P450 genes significantly correlated with glyphosate 

resistance—a class of gene families consistently implicated in xenobiotic detoxification (Gaines 

et al., 2020; Yuan et al., 2007).   345 
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Fig. 2. GWA of glyphosate resistance. A) Manhattan plot of significance of association with 
glyphosate resistance across all 16 scaffolds for two linear mixed models - the upper with no 
fixed effects and the lower with TSR as a covariate. Dashed black horizontal bar indicates the 
0.05 FDR threshold, while the dashed grey bar above it indicates the Bonferroni correction 350 
threshold. X axis is scaled by the length of each scaffold. B) Manhattan plot for scaffold 5 (TSR 
model), which contains the target gene for glyphosate, EPSPS. The vertical grey rectangle 
indicates a previously identified ~6.5Mb EPSPS amplification present across individuals in this 
dataset. C) The proportion of significant SNPs present on each scaffold for each linear mixed 
model. D) The number of significant hits per gene in the TSR model.  355 
 

 

The relative importance of monogenic versus polygenic mechanisms of resistance can be 

addressed by comparing the percent of variance explained by genome-wide SNPs in the TSR + 

Copy Number GWA (polygenic effects) to the r2 of glyphosate resistance on TSR and EPSPS 360 

copy number (monogenic effects). Controlling for both EPSPS copy number and TSR leads to a 

marginal PVE estimate of 0.374, implying that genome-wide SNPs can explain 37% after 

accounting for resistance associated with EPSPS. Similarly, a more direct comparator, a GWA 

using the residuals of a regression of phenotypic resistance on TSR + EPSPS copy number (as 

opposed to a GWA model with TSR + EPSPS copy number as covariates) results in a PVE of 365 
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35%. Given that the initial multiple regression model of resistance on monogenic mechanisms 

(TSR + EPSPS copy number) results in an r2 = 0.33 (F2,152 = 38.69, p = 2.62e-14), we can thus 

infer that 24% of the total variance in glyphosate resistance ((1-0.33) x 0.35) can be explained by 

genome-wide SNPs —implying a near equivalent importance of NTSR to monogenic 

mechanisms of resistance.  370 

 

GO enrichment and candidate genes 

The set of 196 significant SNPs with q-values < 0.05 in the TSR model corresponded to 125 

unique A. tuberculatus genes. 70/125 of these genes were mappable to A. thaliana based on 

orthology, and thus could be used as input for enrichment analyses and candidate gene 375 

exploration. Only 5 genes had more than 4 associated hits; three encode unknown proteins and 

the other two encode tubulin-folding cofactor D and RING membrane-anchor 1 (Fig. 2D). A 

Fisher's exact test showed this set of genes to be significantly enriched for 17 hierarchical 

categories of PANTHER GO-Slim molecular function (Table 1), however significance of these 

categories did not withstand multiple test correction. While we did not detect evidence for 380 

certain molecular functions or biological processes playing a particularly important role in 

glyphosate-resistance, our high quality set of resistance-related SNPs nonetheless shows 

functions consistent with our understanding of NTSR, which we present below. 

Many of the molecular functions of genes in our set of significant SNP set were especially 

notable given previous work on particular gene families and the three known molecular phases of 385 

NTSR (Gaines et al., 2020): herbicide detoxification (via oxidation, hydrolysis, or reduction) 

followed by conjugation, and compartmentalization/ transport into the vacuole or extracellular 

space. Resistance-related alleles show molecular function in catalytic activity, hydrolase activity 

(via both lipase and hydrolases), and monooxygenase activity (i.e., cytochrome P450s) - 

potentially playing roles in phase I or II NTSR (Table 2). Cation channel activity, 390 

transmembrane transporter activity, and ion gated channel activity may be related to phase III, 

transport into the vacuole. In agreement, Panther GO-Slim cellular components implicate genes 

involved in the vacuolar membrane and endocytic vesicles (⅖ classes with raw p-values < 0.05) 

(although distinct from those genes involved in transport) (Sup Table 2).  
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Table 2. Panther GO-Slim molecular function for 196 SNPs in 125 A. tuberculatus genes (70 A. 395 
thaliana orthologs) significantly associated with glyphosate resistance.  Note that these classes 
are not significant after FDR correction.  

Panther GO-Slim Molecular Function Total Found Expected  Fold 
enrichment 

Raw p- 
value FDR 

triglyceride lipase activity 1 1 0 > 100 5.1E-03 1.00 
hydrolase activity 1631 9 4.2 2.2 3.6E-02 1.00 
catalytic activity 4625 20 11.8 1.7 1.5E-02 7.5E-01 
lipase activity 45 2 0.1 17.4 6.4E-03 4.8E-01 
cation gated channel activity 19 2 0.12 16.32 7.24E-03 4.03E-01 
passive transmembrane transporter activity 77 2 0.2 10.2 1.7E-02 7.73E-01 
ion gated channel activity 40 2 0.1 19.6 5.2E-03 4.03E-01 
DNA-binding transcription activator activity 41 2 0.1 19.1 5.4E-03 6.00E-01 
hydrolase activity, acting on C-N bonds 79 2 0.2 9.9 1.8E-02 6.75E-01 
tubulin binding 80 2 0.2 9.8 1.9E-02 6.38E-01 
GTPase activity 145 3 0.4 8.1 6.4E-03 4.09E-01 
monooxygenase activity 128 2 0.3 6.1 4.4E-02 1.00 
 

These genes also function in diverse biological processes, including several catabolic and 

metabolic processes (glucose-6-phosphate, lipid, glycerol-lipid, aglycerol, neutral lipid, 400 

ammonium ion and triglyceride), and cell fate specification. While these terms may be intuitive 

given the phases of NTSR described above, unexpectedly, we also found genes functioning in 

leaf and flower development, regionalization, and circadian rhythm. These four terms relate to 

two genes: YABBY1 and GIGANTEA. GIGANTEA is of particular interest, as it encodes a nuclear 

protein with pleiotropic roles in flowering time, stress response, circadian clock regulation, and 405 

there even being prior evidence for providing herbicide tolerance by increasing oxidative stress 

resistance (Kurepa, Smalle, Va, Montagu, & Inzé, 1998; Mishra & Panigrahi, 2015). Another 

example of a pleiotropically acting gene that has significant association with glyphosate 

resistance is RAX1, which affects shoot branching and in turn is transcriptionally regulated by a 

WRKY transcription factor, also encompassed in our significant SNP set (Table 3). Both YABB1 410 

and GIGANTEA genes (and associated molecular function categories) are absent from the 

significant SNP set of the covariate-free model, implying that the effect of the genes on 

glyphosate resistance changes depending on the TSR context—in other words, these genes may 

epistatically interact with the TSR mutation. The last example of pleiotropy in this set of 

putative-resistance genes hits closer to home—six genes that have been previously implicated as 415 

being either the direct target of, interacting with, or conferring resistance to other herbicidal 

compounds.  

 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 20, 2020. . https://doi.org/10.1101/2020.08.19.257972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

At the same time, some of our genes have putative prior evidence for a direct response to 

glyphosate exposure: several ERF genes (notably ERF105), a NADPH reductase, a glutamate 420 

receptor, and RMA1. Overall, we find many candidate genes are worth listing due to their 

previously identified roles in response to herbicides (Table 3). To be sure, previous associations 

of these genes with other herbicides does not prove a role in conferring glyphosate resistance in 

these populations. They do suggest, however, that these genes play a general role in plant 

xenobiotic responses or ameliorating general plant stresses. 425 
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Table 3. List of candidate NTSR to glyphosate genes of interest, significant after FDR correction 
and compared against evidence from the literature. 

Encoded protein(s) A. thaliana 
ID Evidence from the literature References 

AMP deaminase  AT2G38280 Target of the herbicidal compound deaminoformycin   (Sabina, Paul, Ferl, Laber, & 
Lindell, 2007) 

Cytochrome P450s: 
CYP77A4, CYP76C6,  

& CYP722A1 

AT5G04660, 
AT1G33720, 
AT1G19630 

Broad involvement of the cytochrome P450 gene 
family in NTSR in several species 

(Gaines et al., 2020; Yuan et al., 
2007) 

Ethylene responsive 
transcription factors: 

ERF2, ERF061, ERF011,  
& ERF105 

AT5G47220, 
AT1G64380, 
AT3G50260, 
AT5G51190 

Expression of ERF105 is induced in response to 
paraquat in A. palmeri, and repressed in response to 
glyphosate in A. thaliana 

(Doğramacı et al., 2015; Illgen, 
Zintl, Zuther, Hincha, & 

Schmülling, 2020)  

Ferredoxin, 
  NADPH reductase  AT5G66190 

 - Part of the dicamba monooxygenase, an enzyme used 
to engineer resistance to the herbicide dicamba 
- Part of synthetic glyphosate acetyltransferase 
- Utilized by P450s to insert molecular oxygen in 
herbicides to make them more reactive or more soluble 

(Green & Owen, 2011)  
(Bruggeman, Kuehler, & Weeks, 

2014) 
 (Gaines et al., 2020) 

GDSL 
  esterase/lipase  AT3G62280 Bioactivates an ACCase herbicide in blackgrass   (Ian Cummins & Edwards, 2004) 

GIGANTEA  AT1G22770 Pleiotropic roles in flowering time, stress response, 
circadian clock regulation, and herbicide tolerance  

(Kurepa et al., 1998; Mishra & 
Panigrahi, 2015) 

Glutamate 
  receptor  AT1G42540 Glutamate uptake altered by glyphosate (Gomes et al., 2014; Serra et al., 

2013) 

Pectinesterase 
  inhibitor 11  AT3G47380 Member of this gene family differentially expressed in 

chickpea treated with herbicide imidazoline  (Iquebal et al., 2017) 

Ubiquitin-conjugating 
enzyme E2 32 AT3G17000 Mediates tolerance in A. thaliana to oxidative stress 

induced by paraquat herbicide (Cui, Liu, Li, Yang, & Xie, 2012) 

RAX1 Myb-like 
transcription factor  AT5G23000 Transcriptionally regulated by WRKY transcription 

factor, controls shoot branching (D. Guo et al., 2015) 

Transketolase-2 AT2G45290 Target of naturally synthesized herbicidal compound, α-
Terthienyl 

(B. Zhao, Huo, Liu, Zhang, & 
Dong, 2018) 

E3 Ubiquitin-protein 
ligase RMA1 AT4G03510 A related E3 ligase mediates response to glyphosate in 

A. thaliana  
(Faus et al., 2015) 
(Luo et al., 2016) 

WRKY transcription 
factor  AT2G04880 

 - Based on expression data implicated in cross 
resistance in A. thaliana  
 - Confers resistance to dicamba herbicide   

 (Mahmood, Mathiassen, 
Kristensen, & Kudsk, 2016) 

(Gleason, Foley, & Singh, 2011) 

YABBY transcription 
factor  AT2G45190  Mediates stress responses and flower/leaf development  (Yang et al., 2018)  

 

 445 

Genomic context of putative NTSR alleles 

 

We posited that a closer look at the genomic context of the loci in our set of candidate genes 

would shed light on the strength of selection, genetic architecture, and heterogeneity of NTSR 

among populations. The effect sizes of our alleles are highly asymmetric in direction; only 4 450 
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SNPs have negative effects on glyphosate resistance compared to 192 positive effects, relative to 

susceptible reference, with this deficit being significant relative to to the null distribution 

(proportion of negative effect SNPs = 0.021, 95% CI of empirical null = 0.031, 0.082). Our 

significant SNPs tend to fall into two categories, rare alleles of modest effect and common alleles 

with small effects (Fig. 3A). The negative relationship between effect size and frequency may be 455 

due to biological or methodological properties, or a combination of the two: resistance alleles 

with larger effects may have more deleterious pleiotropic effects (as in (Kryukov, Pennacchio, & 

Sunyaev, 2007; Marouli et al., 2017; Tennessen et al., 2012)), a lack of power makes it difficult 

to detect rare, small-effect alleles, and the Winner’s Curse leads to an overestimation of detected 

effect sizes (D. J. Liu & Leal, 2012). Despite this apparent tradeoff, our set of resistance-related 460 

SNPs is enriched both for absolute effect sizes compared to the null distribution (median beta =  

1.593185, 95% CIs of median empirical null: 1.371, 1.561), and for elevated allele frequencies 

(median AF = 0.097, 95% CIs of median empirical null: 0.061, 0.082) (Fig. 3B).  

 

The set of resistance-related SNPs also show elevated values for the Weir-Cockerham FST 465 

diversity estimator between resistant and susceptible individuals, compared to both the genome-

wide distribution and the null distribution (median FST = 0.099, 95% CIs of median empirical 

null: 0.063, 0.072) (Fig. 3C). Notably, this pattern is independent of differences in the allele 

frequencies of SNP sets among the permuted and observed GWAS (Fig 3C inset). This pattern 

also remains consistent after removing significant SNPs on the EPSPS containing scaffold 5, 470 

implying this excess is not driven by monogenic selection at EPSPS.  

 

We also tested for signals of directional and balancing selection on glyphosate resistance-related 

alleles by examining the length and homozygosity of resistant versus susceptible haplotypes. We 

first investigated signals of extended haplotype homozygosity (EHH), a haplotype-based test that 475 

has been used to assay signals of positive selection around focal SNPs based on decay of 

homozygosity. Despite enrichment for allelic differentiation, we find no evidence of an 

enrichment of average EHH 10 kb around either side of observed resistant alleles compared to 

permuted (mean R allele EHH = 0.0703, 95% CIs of mean empirical null: 0.0577, 0.0737) (Fig 

3D), although we observed a slight excess of mean EHH for non-Scaffold 5 resistance alleles 480 

(mean R allele EHH = 0.0756). Taking the integral of the EHH by distance curve, referred to as 
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integrated Haplotype Homozygosity (iHH; (Voight, Kudaravalli, Wen, & Pritchard, 2006)) 

reveals that observed resistant haplotypes are smaller than expected under the empirical null 

distribution (median iHH = 0.00405724, 95% CIs of median empirical null: 0.0059, 0.0084) (Fig 

3E; difficult to visualize in Fig 3D as this pattern is in part driven by larger variance in the EHH 485 

curve among permuted SNPs). Finally, the standardized integrated Haplotype Score (iHS) 

(which compares differences in iHH between reference and ancestral alleles, standardized for 

allele frequency; (Voight et al., 2006)) shows enrichment for unusually small homozygous tracts 

of resistant relative to susceptible haplotypes, given differences in their allele frequencies 

(median standardized iHS = -0.9544, 95% CIs of median empirical null: -0.3665, -0.1214) (also 490 

the case for non-Scaffold 5 SNPs) (Fig F). 

 

Together the strong allelic-differentiation and short-haplotypes seem to suggest a role for 

balancing selection, and so as a final check we also interrogated 0-fold and 4-fold diversity and 

Tajima’s D in 10kb windows surrounding focal SNPs which is also expected to be elevated 495 

under balancing selection. While we see evidence for elevated 0-fold diversity and Tajima’s D 

surrounding resistance-related SNPs genome-wide (mean 0-fold 𝜋 = 0.0031, [95% CIs: 0.000, 

0.0013]; median 0-fold Tajima’s D = -0.502 [95% CIs:-0.608, -0.518]), we see a much more 

muted signal for 4-fold sites (mean 4-fold 𝜋 =0.0075, [95% CIs: 0.0020, 0.0057]; median 4-fold 

Tajima’s D = -0.399 [95% CIs: -0.482, -0.359]), that appears to be in part driven by scaffold 5 500 

(mean 4-fold 𝜋 at non-scaf 5 SNPs = 0.0032, [95% CIs: 0.0015, 0.0065]) (Sup Figure 1).  
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Fig 3.  Genomic summaries of SNPs significantly associated with glyphosate resistance (for all 
significant SNPs, and non-Scaffold 5 significant hits) compared to the empirical null distribution 
and genome-wide background. A) Effect sizes relative to allele frequencies, B) the distribution 505 
of allele frequencies, C) the distribution of Fst values (inset showing association between Fst and 
allele frequency), D) expected haplotype homozygosity (EHH) around focal resistance-related 
and susceptibility-related alleles, E) the integrated haplotype homozygosity (iHH) of resistant-
related versus susceptibility-related haplotypes, F) standardized integrated haplotype score (iHS), 
treating resistant alleles as the derived allele (note a positive value indicates an excess of derived 510 
relative to ancestral haplotype size, as in (Szpiech & Hernandez, 2014)).  The legend in the 
bottom right corner applies to all plots, while legends for D and E additionally distinguish allele 
type.   
 

Discussion 515 

Herbicides, when appropriately applied in agricultural settings, are often lethal, and for this 

reason they elicit very strong and rapid evolutionary responses in weed populations. The most 

commonly recognized genetic responses to these strong selection pressures are the appearance of 

mutations at the loci whose products are directly targeted by the herbicide. How often selection 

by herbicides leads to easily detectable changes at other loci in the genome has remained unclear. 520 

In this study, we investigated the genetic architecture of resistance to glyphosate herbicides in a 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 20, 2020. . https://doi.org/10.1101/2020.08.19.257972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

problematic agricultural weed, Amaranthus tuberculatus. As proof of concept, GWA correctly 

identified EPSPS, the target gene of glyphosate herbicides, as significantly associated with 

resistance. Consistent with polygenic NTSR being widespread across populations and the 

genome, however, we find that in addition SNPs in more than 100 distinct genes across all 16 525 

chromosomes are also associated. While we refer to these significantly associated alleles as 

resistance-related, it is important to note that the genetic architecture we characterize is likely to 

be the product of a complex history of selection and accumulation of background-specific 

compensatory mutations (as in (Craig MacLean, Hall, Perron, & Buckling, 2010)). In particular, 

nearly all of our resistant individuals have EPSPS amplification variants and/or TSR, so many of 530 

our identified resistance-associated SNPs may be epistatically related to stress-tolerance, 

conditional on the presence of glyphosate resistance. Compared to both the genome-wide 

background and null-expectation, we find that glyphosate resistance-related alleles are enriched 

for intermediate frequencies and large effects. Together, these results fit a scenario of a genetic 

architecture of NTSR shaped by strong selection, with common alleles shared across populations 535 

and rare, population-specific and possibly background-dependent alleles. Despite the recognition 

that positive selection from herbicides should be rampant in the field, nearly all of our population 

genomic analyses point to balancing selection maintaining resistance and susceptibility related 

alleles, likely over longer evolutionary timescales than herbicide usage. Below, we discuss the 

genetic architecture of glyphosate resistance, the role of selection in shaping it, and candidate 540 

NTSR genes. 

  

Model comparison 

With previous knowledge of two genetic causes underlying glyphosate resistance—a non-

synonymous mutation within EPSPS that prevents glyphosate from inhibiting the encoded 545 

enzyme, and amplification of EPSPS that overcomes the inhibitory effect of glyphosate through 

overproduction of the EPSPS protein—we sought to understand how these covariates influence 

the inferred genetic architecture of resistance. We compared linear mixed effect models, with 

iterative additions of these covariates, based on metrics of GWA model-fitting quality (Table 1). 

Our best model in terms of both inflation, percent of residual phenotypic variation explained, and 550 

FDR was one that only included TSR as a covariate. Reassuringly, this model showed 32 SNPs 

within the EPSPS-amplification significantly related to glyphosate resistance, genotypes which 
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together explain 76% of the variance in EPSPS copy number (based on multiple linear 

regression), indicating that the majority of the variance in resistance due to the amplification has 

been accounted for. However, it is worth keeping in mind that some significant SNPs in our set 555 

from the TSR model may be indirectly interacting with resistance through their association 

(biological or statistical) with EPSPS.  

 

Genome-wide SNPs explain 35% of residual variance in glyphosate resistance (PVE based on 

residual resistance values after removing variance explained by monogenic modes), after 560 

accounting for the 33% of variance in resistance explained by monogenic mechanisms (as 

inferred from multiple regression). Given that the residual variation in resistance should 

approximate 1-(monogenic r2), genome-wide SNPs in our model can thus explain 24% of total 

variance in resistance—implying NTSR mechanisms can explain nearly as much variance in 

phenotypic resistance as monogenic mechanisms. 565 

 

Effect size & Allele frequencies 

The effect sizes of SNPs associated with resistance tend to be negatively correlated with allele 

frequency (Fig 2A). The lack of rare alleles with small effects is likely to be driven by lack of 

statistical power—a key driver in the problem of missing heritability (Manolio et al., 2009). For 570 

human height, a classic example of a polygenic trait where small effect sizes should be prevalent, 

only 83 significantly associated alleles with a frequency < 0.05 could be identified with a sample 

size of 711,428 individuals, and their effect sizes were >10 times that of common variants on 

average (Marouli et al., 2017). The median effect size (beta) of rare alleles (<0.05) in our GWAS 

was 2.34, while for common alleles (=>0.05) it was only 1.52, showing an excess of large-effect 575 

common alleles, when compared to the extreme human height case. The excess of large effect, 

common alleles is also consistent with our expectation of resistance as a much less polygenic 

trait than height. These beta values can be interpreted as the effect of increasing the count of the 

allele by 1, per unit of resistance. In our case, a unit of resistance on a scale of 1-5 corresponds 

roughly to a 20% decrease in percent damage from glyphosate application. Thus, for every 580 

increase in allele count, the median effect size rare allele may lead to a near 50% decrease in 

percent damage.   
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Aside from power, the negative correlation between allele frequency and effect size and the 

general lack of common, large effect alleles may be a consequence of selection. For human 585 

diseases and Capsella grandiflora gene expression, this phenomenon has been explained by 

greater deleterious, and possibly pleiotropic, costs of large effect alleles, such that purifying 

selection reduces their frequency within populations (Eyre-Walker, 2010; Josephs, Lee, 

Stinchcombe, & Wright, 2015; Kryukov et al., 2007; Marouli et al., 2017). While we see this 

negative correlation in our observed SNP set, both large effects (Fig 2A) and common alleles 590 

(Fig 2B) are enriched relative to the null expectation. The enrichment for large effect sizes is 

likely to reflect particularly strong selection in shaping the genetic architecture for herbicide 

resistance (Eyre-Walker, 2010), although that does not explain the additional enrichment for 

common variants. However, the population genetic framework in (Eyre-Walker, 2010) models a 

polygenic trait’s influence on fitness through its pleiotropic costs, where a tradeoff between large 595 

effect sizes and rare allele frequencies mediates these costs. With herbicide resistance, selection 

for resistance approaches near lethality (s ~ 1) and the benefits of large-effect, common alleles 

are likely to outweigh any pleiotropic costs (at least in the short term). Thus, as opposed to most 

polygenic traits where the cumulative effect of rare large-effect and common small-effect alleles 

explain most phenotypic variance, for herbicide resistance, populations additionally respond to 600 

selection through increasing the frequencies of large effect variants.  

The range in allele frequency and enrichment of high frequency alleles also implies that a subset 

of resistance-alleles are shared among populations, whereas others are population specific. Rare-

population specific alleles are likely to be the work of compensatory mutations arising on already 

resistant backgrounds (as is the case for antibiotic resistance, summarized in (Craig MacLean et 605 

al., 2010)), that interact epistatically to strengthen resistance to herbicides or mediate their costs 

in the absence of herbicides.  

 

Candidate genes 

We found 196 resistance-associated SNPs in the TSR model, corresponding to 125 unique 610 

Amaranthus tuberculatus genes. Of these genes, we could annotate 70 using orthology-based 

approaches. We found our gene set had diverse roles in molecular function, biological processes, 

and cellular components, with various terms in each significantly enriched, but not after multiple 

test correction (we focus our discussion on molecular function, as it is the most relevant in the 
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weed science literature on mechanisms of non-target site resistance (Gaines et al., 2020)). While 615 

not significantly enriched after multiple test correction, molecular functions in our gene set was 

highly relevant to the three-phase schema of non-target site resistance (Gaines et al., 2020)—

detoxification, conjugation, and transport—including substantial monooxygenase function by 

paradigmatic cytochrome P450s. Thus, while we did not detect evidence of a particular 

molecular function playing a foremost role in glyphosate resistance, we do have strong evidence 620 

for the involvement of our particular genes and their relevance to NTSR, which we discuss 

further below. 

 

Several types of proteins encoded by genes in our significant set have been previously linked to 

resistance to glyphosate or are a part of the shikimate pathway targeted by glyphosate: 625 

Ferredoxin NADPH reductase belongs to two synthetic enzymes (dicamba monooxygenase and 

glyphosate acetyltransferase) that are used to produce genetically modified herbicide resistant 

plants (Bruggeman et al., 2014; Gaines et al., 2020; Green & Owen, 2011);  ERF0105 is 

differentially expressed in glufosinate treated A. thaliana (Salas-Perez et al., 2018); uridine 

kinase-like protein 3 mediates responses to glyphosate in A. thaliana (Faus et al., 2015; Luo et 630 

al., 2016); and glutamate receptors may be important, because glutamate uptake is altered by 

glyphosate (Gomes et al., 2014; Serra et al., 2013). In our set of genes, these may be those most 

likely to directly influence resistance to glyphosate herbicides, although it is statistically 

impossible to verify the strength of evidence for each of them. Instead, they may be interesting 

candidate NTSR genes for further functional validation. 635 

 

Many proteins encoded by genes tagged by our set of significant SNPs also appear to be the 

target of other herbicides or herbicidal compounds. For example: Transketolase-2 is the target of 

a naturally derived herbicidal compound α-Terthienyl (Sabina et al., 2007), GDSL esterase/lipase 

bioactivates an ACCase herbicide in blackgrass (Ian Cummins & Edwards, 2004), ubiquitin-640 

conjugating enzyme E2 32 is induced by the herbicide paraquat in A. thaliana (Cui et al., 2012), 

and AMP deaminase is the target of the herbicidal compound deaminoformycin (Sabina et al., 

2007). That a GWA for glyphosate resistance results in several significant associations with 

these genes implies that they may pleiotropically function to confer cross-resistance to several 

modes of herbicides, or that glyphosate resistance is associated with other, unassayed modes of 645 
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resistance in our samples. With respect to the former hypothesis, we found one gene, encoding a 

WRKY transcription factor, that has been previously shown to contribute to herbicide cross-

resistance in A. thaliana based on expression data.  

 

Genes in our associated set also seem to have pleiotropic effects on non-resistance related 650 

traits—GIGANTEA has been previously identified as playing roles in flowering time, stress 

response, circadian clock regulation and herbicide tolerance, while YABBY genes function in 

stress response and leaf/flower development and RAX1 in shoot branching. All in all, we 

identify a diverse set of candidate genes, with previously identified roles in resistance to many 

herbicides, including glyphosate, and pleiotropic roles in cross resistance, life history and 655 

physiological traits.  

 

While pleiotropy may be one explanation for why we see genes with diverse functions in our 

GWA for glyphosate resistance, a complex history of compounded selection from various 

herbicides and related shifts in life history optima could also drive this pattern. The problem of  660 

correlated traits is endemic to all GWA style analyses (Coop, 2019; Novembre & Barton, 2018; 

Racimo, Berg, & Pickrell, 2018), which is not a new problem in evolutionary genetics (Lande, 

1979; Lande & Arnold, 1983). GWAS are inherently correlative, with traits (response variables) 

related to SNP genotypes through a statistical model. It is important to keep in mind that these 

types of analyses, in addition to describing the genetic basis of the response variable, can also 665 

capture correlated traits in at least two ways. First, after the origin of TSR resistance or copy 

number expansion, it is likely that any trait that improves plant performance in the presence of 

glyphosate damage (e.g., growth rates, generalized stress responses, changes to photosynthetic 

performance, water relations, phenology, etc) will be favored, even if these traits are 

physiologically and pleiotropically unrelated to detoxification, conjugation, or transport of 670 

herbicides. Consequently, SNPs that improve these traits will be associated with phenotypic 

assays of resistance and observed as GWAS hits. Second, any agricultural practice (pesticide use, 

manuring, tilling, or irrigation), soil characteristic, or climate variable that is correlated with 

glyphosate resistance will create a set of co-selected traits (e.g., resistance, nutrient uptake, seed 

germination dormancy, flowering time, drought tolerance), and these may also be detected as a 675 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 20, 2020. . https://doi.org/10.1101/2020.08.19.257972doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.19.257972
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

GWAS hit for herbicide resistance, even if their function is for other ecologically important 

traits. 

 

That being said, at least part of this signal we describe here is likely to be independent from 

correlated selection, especially given that we see evidence of selection on EPSPS, a known target 680 

of glyphosate herbicides.  Furthermore, interpreting the function of certain genes in light of the 

historical context of field sources of selection, implies that three links to other herbicidal 

compounds are unlikely to be driven by correlated selection from other herbicides and rather 

may be linked through stress-response; ACCase herbicides have no activity in Amaranthus 

tuberculatus, and deaminoformycin & α-terthienyl are not used in the field for amaranth control. 685 

Nonetheless, the interpretation of these resistance-related alleles as strictly driven by selection 

only from glyphosate herbicides is incorrect—these resistance-related alleles are likely to 

characterize a complex history of agricultural selection in resistant weeds. To disentangle the 

complexities of how shared the genetic basis of NTSR is in response to different herbicides and 

with other non-resistance related traits, complementary quantitative genetic and population 690 

genomic methods could be applied to cohort of genotypes with many phenotyped traits to 

estimate correlated selection and corresponding genetic architectures. 

 

Differentiation, haplotype homozygosity, and a role for balancing selection 

Our set of resistance-related alleles are not only enriched for effect sizes and high allele 695 

frequencies, but also for genetic differentiation (Weir & Cockerhams Fst) and in unexpected 

ways with respect to haplotype length and homozygosity (Fig 3C-F). Enrichment relative to the 

permuted expectation is likely to reflect signals of selection, as it is above and beyond what 

would be expected given the population structure in our samples for 100s of random traits. While 

by definition, GWAS are expected to find alleles with high allele frequency differences and 700 

differentiation for a trait of interest, our resistance alleles are enriched even beyond permuted 

null expectations (Fig 3C)—consistent with a role of strong selection in shaping allele frequency 

differences among susceptible and resistant individuals. It should be noted that this signal is 

independent of differences in allele frequencies between our permuted and observed SNP set; Fst 

in our permuted SNPs shows no correlation with allele frequency (but higher variance at lower 705 
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frequencies), whereas Fst in our observed SNP set shows no linear correlation but an enrichment 

of Fst at intermediate allele frequencies (Fig 3C inset).  

 

Selection on genome-wide resistance-related alleles may be in the form of positive and/or 

balancing selection. Because net selection for and against herbicide resistance should vary 710 

depending on environment, assuming a direct or pleiotropic cost of resistance, both susceptible 

and resistant individuals may be alternately favored in herbicide and herbicide-free settings over 

many generations. Weed science research has long been interested in the costs of herbicide 

resistance mutations, and much work on the topic has led to mixed results, with fitness costs 

dependent on the mutation, organism, and environment (summarised in (Baucom, 2019)). 715 

Nonetheless, studies on the costs of resistance in the absence of herbicides have focused 

primarily on TSR mechanisms, and pleiotropic costs of resistance as a trait should be much more 

ubiquitous where hundreds of diverse genes are involved (e.g. 90% of all human GWAS hits 

overlap multiple traits; (Watanabe et al., 2019)). 

 720 

We find no evidence that extended haplotype homozygosity (EHH) is enriched in a distance of 

10kb around significant hits in our observed GWA compared to the null expectation and 

alternative susceptible haplotypes (Fig 3D). However, we see both a significant deficit of 

integrated haplotype homozygosity for the resistance haplotype (Fig 3E) and the standardized 

integrated haplotype score, relative to the permuted null expectation (Fig 3F). Since iHS is 725 

standardized by genome-wide empirical allele frequency distributions, this can be interpreted as 

unusually fast EHH decay, or unusually small homozygous haplotypes, associated with resistant 

relative to susceptible alleles (Fig 3E) (Voight et al., 2006). Particularly short haplotypes 

associated with resistance are not expected under partial selective sweeps, which should increase 

the homozygous haplotype length of selected compared to unselected alleles (Voight et al., 730 

2006)). In contrast, balancing selection, which is expected to maintain diversity over longer 

timescales, should lead to particularly short tracts of homozygous haplotypes as old haplotypes 

have both high diversity and allelic associations broken-up overtime due to more opportunity for 

recombination (B. Charlesworth, Nordborg, & Charlesworth, 1997; D. Charlesworth, 2006; 

Hudson & Kaplan, 1988). A significant deficit of standardized iHSs & resistant iHH values 735 

implies that resistance alleles have been maintained over longer timescales than expected.  
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Under the long-term maintenance of genetic diversity—or balancing selection—we also expect 

to see an excess of neutral (4 fold) genetic diversity in genomic windows surrounding focal 

alleles, and an excess of positive Tajima’s D. While we see enrichment of these statistics in 740 

surrounding 0 fold sites, we do not see this for 4-fold sites. One explanation for this lack of 

signal may be due to the tendency of our resistance-related haplotypes to be particularly short, 

leaving us with little chance to detect long range signals of selection in linked neutral diversity. 

Therefore, while particularly high resistance-related allele frequencies and differentiation seemed 

to initially imply directional positive selection, taken together with haplotype-based inference, 745 

these results are most consistent with the maintenance of resistance-related alleles through 

balancing selection. 

 

That herbicide-resistance alleles appear to be under balancing selection seems like a 

contradiction of timescales—selection from herbicides should be extremely recent (on the scale 750 

of decades), while detectable signals of balancing selection are typically very old (on the scale of 

millions of years) (D. Charlesworth, 2006). Rather than recent fluctuations in strong selection 

due to alternating herbicide use, unusually short resistant haplotypes may be possible if these 

alleles represent a subset of broadly functioning stress-response genes in which diversity has 

been maintained in populations over longer evolutionary time, potentially due to fluctuating 755 

selection pressures on stress-related traits over space and time. This further highlights the 

potential for pre-existing standing genetic variation on resistance-associated variation prior to 

herbicide usage. 

 

Early seminal population genetic theory on herbicide resistance posits that even with rotating 760 

crop and herbicide use (a rotation scenario of one year on/one year off)—with selection 

coefficients (s) for resistance ranging between 0.75 and 0.99 within generations, and with a cost 

of resistance in the absence of herbicides as s=0.25—that a rare monogenic dominant allele will 

reach a frequency of ~0.7 (s=0.75) or go to fixation (s=0.99) within 20 years (Jasieniuk, Anita L. 

Brûlé-Babel, & Ian N. Morrison, 1996). However, our results illustrate that the genetic 765 

architecture of resistance is more complex and polygenic than a single dominant allele, 

encompassing a range of allele frequencies and effect sizes. This complex basis means that small 
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to moderate changes in the frequency of many alleles can appreciably alter phenotypic values, 

with weaker selection on each allele individually. Compounded with the possible role of long-

term balancing that we find here, diversity in polygenic resistance-related alleles may persist in 770 

populations over much longer timescales then initially hypothesized. 

 

Conclusion 

 

In conclusion, our study identifies 125 genes across all 16 chromosomes associated with 775 

glyphosate resistance. These alleles range in effect size and allele frequency while being 

enriched for high values of both, implying a drastic response of genome-wide alleles to selection 

from herbicides, but an in part heterogeneous architecture of resistance across populations. 

Consistent with the literature, we find resistance-related genes function in detoxification, 

conjugation, and transport, but we also find that these alleles may have pleiotropic roles in 780 

resistance to several classes of herbicides, and key life history traits. We find evidence of 

elevated differentiation, allele frequencies, and unusually short resistant haplotypes, implying a 

role of balancing selection in the maintenance of resistance-related alleles. Given that genome-

wide SNPs can explain 25% of the total variance in glyphosate resistance in this sample of 

individuals, this work implies that we can remain optimistic about the prospects for phenotypic 785 

prediction of resistance in weed populations. Moreover, our results suggest that selection from 

herbicides may have more widespread consequences on genomic diversity than initially 

assumed. Further work to functionally validate our candidate genes will shed light on mechanism 

and consistency of these alleles in conferring resistance across populations.  
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Supplemental Tables 1125 
 

Sup Table 1. List of individuals within populations and geographic regions used in the GWAS, 
along with average glyphosate resistance ratings, counts of TSR, and mean EPSPS copy number.  

Region Population ID n 
Mean Resistance 

Rating (1-5) 
n (TSR) 

Mean EPSPS 
Copy Number 

Walpole 15 6 1.33 0 1.19 

16 4 1.00 0 1.18 

17 8 3.00 0 9.63 

18 6 3.33 0 10.36 

19 3 2.67 1 6.72 

27 8 2.38 0 3.85 

Essex 4 10 1.40 0 1.60 

5 9 2.44 0 4.64 

6 6 1.67 1 1.40 

7 6 2.50 1 5.44 

9 7 1.14 0 1.09 

Illinois B 10 2.60 0 1.45 

D 10 2.30 6 1.11 

E 8 3.00 0 4.61 

F 10 2.30 0 4.59 

G 7 3.71 1 5.07 

H 10 2.40 0 3.76 

J 10 2.30 0 5.31 

Missouri K 9 2.22 0 3.88 

Natural N 8 1.00 0 1.12 
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 1130 
 
 

Sup Table 2. Panther GO Enrichment results for Biological Processes, Protein Class, and  
Cellular Component for our significant SNP set from the TSR model (196 SNPs, 125 
Amaranthus tuberculatus genes, 70 Arabidopsis orthologues).  1135 
 

PANTHER GO-Slim Cellular Component Total Observed Expected 
Fold 
Enrichment 

raw P 
value FDR 

endocytic vesicle 2 1 0.01 > 100 5.09E-03 1 

lipid droplet 5 1 0.01 78.33 1.27E-02 1 

autophagosome 5 1 0.01 78.33 1.27E-02 1 

vacuolar membrane 127 2 0.32 6.17 4.21E-02 1 

vacuolar part 127 2 0.32 6.17 4.21E-02 1 

endosome 134 2 0.34 5.85 4.64E-02 1 

PANTHER GO-Slim Biological Process       

acylglycerol catabolic process 1 1 0 > 100 5.09E-03 1 

glycerolipid catabolic process 4 1 0.01 97.91 1.27E-02 1 

acylglycerol metabolic process 13 1 0.03 30.13 3.51E-02 1 

neutral lipid metabolic process 13 1 0.03 30.13 3.51E-02 1 

neutral lipid catabolic process 1 1 0 > 100 5.09E-03 1 

mitochondrial transcription 3 1 0.01 > 100 1.01E-02 1 

mitochondrial RNA metabolic process 19 1 0.05 20.61 4.97E-02 1 

cell fate specification 5 1 0.01 78.33 1.52E-02 1 

cell fate commitment 19 1 0.05 20.61 4.97E-02 1 

IMP metabolic process 6 1 0.02 65.28 1.77E-02 1 

nucleoside monophosphate metabolic process 14 1 0.04 27.98 3.75E-02 1 

regulation of circadian rhythm 8 1 0.02 48.96 2.27E-02 1 

regionalization 9 1 0.02 43.52 2.52E-02 1 
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pattern specification process 9 1 0.02 43.52 2.52E-02 1 

circadian rhythm 12 1 0.03 32.64 3.26E-02 1 

rhythmic process 12 1 0.03 32.64 3.26E-02 1 

ammonium ion metabolic process 12 1 0.03 32.64 3.26E-02 1 

triglyceride metabolic process 13 1 0.03 30.13 3.51E-02 1 

fruit development 14 1 0.04 27.98 3.75E-02 1 

lipid homeostasis 31 2 0.08 25.27 3.21E-03 1 

glucose 6-phosphate metabolic process 16 1 0.04 24.48 4.24E-02 1 

leaf development 18 1 0.05 21.76 4.73E-02 1 

PANTHER Go-Slim Protein Class       

transketolase 2 1 0 > 100 4.26E-03 2.43E-01 

transferase 682 5 0.97 5.15 2.75E-03 2.35E-01 

metabolite interconversion enzyme 2275 10 3.24 3.09 1.05E-03 1.80E-01 

deaminase 16 1 0.02 43.94 2.39E-02 6.81E-01 

hydrolase 492 3 0.7 4.29 3.30E-02 8.05E-01 

exoribonuclease 25 1 0.04 28.12 3.63E-02 7.76E-01 

decarboxylase 26 1 0.04 27.04 3.77E-02 7.16E-01 
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Sup Figure 1. Distributions of 4-fold and 0-fold Tajima’s D and diversity in 10kb windows 
surrounding focal resistance-related SNPs (across all scaffolds, or excluding the EPSPS-
containing scaffold 5) relative to the genome-wide and permuted distributions. 
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