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Abstract 
Understanding the persistence of genetic variation within populations has long been a goal of 

evolutionary biology.  One promising route towards achieving this goal is using population genetic 
approaches to describe how selection acts on the loci associated with trait variation. Gene expression 
provides a model trait for addressing the challenge of the maintenance of variation because it can be 
measured genome-wide without information about how gene expression affects traits. Previous work has 
shown that loci affecting the expression of nearby genes (local or cis-eQTLs) are under negative selection, but 
we lack a clear understanding of the selective forces acting on variants that affect the expression of genes in 
trans. Here, we identify loci that affect gene expression in trans using genomic and transcriptomic data from 
one population of the obligately outcrossing plant, Capsella grandiflora.  The allele frequencies of trans-eQTLs 
are consistent with stronger negative selection acting on trans-eQTLs than cis-eQTLs, and even more 
strongly on trans-eQTLs associated with the expression of multiple genes. However, despite this general 
pattern, we still observe the presence of a trans-eQTL at intermediate frequency that affects the expression of 
a large number of genes in the same coexpression module. Overall, our work highlights the different selective 
pressures shaping variation in cis- and trans- gene regulation.  
 

Introduction 
Understanding why genetic variation persists in populations has long been a goal of evolutionary 

biology [1]. Variation within populations may be 1) neutral and maintained by mutation-drift balance, 2) 
deleterious and maintained by mutation-selection balance, or 3) conditionally beneficial and maintained by 
balancing selection [2]. The availability of large genomic and phenotypic datasets offers the potential to 
evaluate the relative importance of these three hypotheses by identifying the genetic loci that are associated 
with a trait and using population genetic approaches to determine how selection acts on these loci [3,4]. In 
particular, the allele frequencies of eQTLs can provide information about selection, since negative selection 
against deleterious mutations is expected to keep alleles at lower frequencies than they will be under neutrality 
or balancing selection. 

Gene expression has emerged as a powerful model trait for addressing the challenge of the 
maintenance of variation [5]. Gene expression is a crucial aspect of the genotype to phenotype map and 
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expression studies provide a large set of traits that can be easily measured without prior information about 
how these traits might relate to fitness [6]. Examining a large set of gene expression traits can reveal the 
evolutionary forces acting on traits in general, rather than a few or a handful of pre-defined traits chosen for 
specific reasons. The genetic variation that shapes expression can be partitioned into two categories: 
cis-regulatory variants that only affect the allele they are linked to and trans-regulatory variants, that affect 
both alleles equally and can be located near or far from the gene they regulate [7,8]. Previous work has 
mapped the genetic variants that affect expression (eQTLs) of nearby genes and shown that local eQTLs and 
cis-eQTLs are generally under negative selection [9–12]. However, trans-eQTLs may be under different 
selection pressures than cis-eQTLs. Since trans-regulatory variation can affecs the expression of multiple 
genes, trans-regulatory elements may have greater pleiotropic effects on phenotypes and be subject to 
stronger negative selection than cis-regulatory variants [13].  This prediction is supported by evidence of 
greater trans-regulatory variation within species compared to between species [7,14], reduced population 
frequencies of distant eQTLs compared to local eQTLs [15], and greater effect sizes of standing cis-regulatory 
variation than trans regulation [5,16,17], although these effect size differences may also be caused by 
differences in mutational input [18].   

Despite the expectation that purifying selection will reduce trans-acting regulatory variation within 
species, there is evidence that trans-regulatory variation is common. Linkage mapping from crossing 
experiments and population-based association mapping have often found trans-regulatory hotspots, where 
genetic variation at a locus affects expression of numerous genes [11,16,19–23]( but see [17]). Segregating 
trans-variation is more likely to be tissue-specific than cis-regulatory variation in humans [24] and, in 
Arabidopsis thaliana, trans-eQTLs are particularly important for expression changes in response to drought 
[23,25]. These findings suggest that trans-eQTLs contribute to standing variation, especially in specific tissues 
and environments. 

Here we both map trans eQTLs for single genes and look for loci associated with the expression of 
many genes [26–28], in a single population of the plant Capsella grandiflora , an obligately outcrossing member 
of the Brassicaceae family with large effective population size and high levels of genetic sequence diversity 
[29,30]. To look for eQTLs affecting the expression of multiple genes, we use coexpression networks to 
summarize expression across many genes and test for associations between genetic variants and the 
expression of network modules. Coexpression networks are a powerful way to find patterns in large 
transcriptomic datasets [17,31–35]. For example, coexpression networks made across conditions, tissues, and 
developmental time can successfully identify specialized metabolic pathways [32] and coexpression modules 
made with a diverse panel of mouse lines correlate with phenotype [36]. In addition, changes in coexpression 
module expression have been linked to adaptation [37] and changing ecological conditions [35]. We detect a 
large number of putative cis and trans eQTLs and show that, based on allele frequencies, trans eQTLs are 
generally under stronger negative selection than cis eQTLs. We use coexpression networks to summarize 
expression levels across many genes and detect four eQTL for coexpression module expression. Overall, our 
results suggest that negative selection acts on trans eQTLs more strongly than cis, but there are some 
trans-eQTLs affecting large numbers of genes at appreciable frequencies in the population. 
 

Results 
Linking allele frequencies and selection in cis and trans eQTLs. 
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We tested for associations between leaf expression at all genes with 1,873,867 tag SNPs in 146 
individuals. We identified 6,231 associations (FDR < 0.1) between 5,468 unique snps and 2,341 genes 
(Figure 1) . These eQTLs were associated with the expression of between 1 and 93 genes. We separated 
associations into 2,472 trans eQTLs that were more than 5kb away from the gene they regulated and 3759 
local (putatively cis) eQTLs that were less than 5kb away from the gene they regulated. We will refer to these 
eQTLs as cis eQTLs for clarity, while noting that some of them may be caused by trans-eQTLs located near 
the genes they regulate. 3,300 of these cis-eQTLs were detected previously in a subset of 99 individuals at 
p<0.05, and 2,636 at an FDR of 0.1 (the cutoff used in that study) [9]. Trans-eQTLs had larger effect sizes 
than cis-eQTLs (p < 0.001, mean local effect size = 0.91, mean trans effect size = 1.01).  

We used the minor allele frequency (‘MAF’) to infer the relative strength of selection acting on 
different types of eQTLs. Trans-eQTLs had lower MAFs than than cis-eQTLs ( Figure 2, p < 0.001, mean 
trans MAF = 0.214, mean cis MAF = 0.267). This result was robust to the cutoff distance used to define cis- 
and trans-eQTLs: trans-eQTLs had lower MAFs than cis-eQTLs for distance cutoffs of 1 kb, 2.5 kb, and 10 
kb (p < 0.001). This difference in allele frequencies is consistent with stronger negative selection on 
trans-eQTLs than cis-eQTLs. However, since trans-eQTLs have larger effects on expression, there may be 
more power to detect trans-eQTLs at lower frequencies, causing the observed pattern. We found that when 
we restricted our analysis to eQTLs in the top quartile of effects (684 cis-eQTL and 692 trans eQTL), 
trans-eQTLs were still present at lower minor allele frequencies than cis-eQTLs, consistent with allele 
frequency differences resulting from stronger negative selection on trans-eQTLs than cis-eQTLs (p < 0.001, 
mean cis MAF = 0.115, mean trans MAF = 0.098).  

We also investigated the MAFs of eQTLs associated with the expression of many genes compared to 
the MAFs of eQTLs associated with only one gene. We restricted this analysis to trans eQTLs, to ensure that 
the differences between cis and trans eQTLs described above did not confound the results. Within trans 
eQTLs, there were 1,635 eQTLs associated with one gene and 376 eQTLs associated with the expression of 
more than one gene at an FDR < 0.1. The MAF of eQTLs with one association was significantly higher than 
the MAF of eQTLs with more than one association (p < 0.001, one gene MAF = 0.214, more than one gene 
MAF = 0.196). This result is consistent with negative selection acting more strongly on eQTLs with many 
associations than eQTLs with one one association. 

 
Coexpression module GWAS identifies SNPs affecting expression modules 

We identified 16 coexpression modules ranging in size from 69 to 6392 genes (Figure S1) . We 
summarized expression level across modules, which we will refer to as ‘module expression’, for each 
individual using eigengenes. Module expression is not correlated with collection timing (p > 0.2, Figure S2). 
Module expression values show varying distributions: some modules had normal distributions, some were 
bimodal, and some showed strong skews where a few individuals had very high module expression compared 
to other individuals (Figure S3) . Because the skewed distribution of module expression values could lead to 
false positives during association mapping, we quantile-normalized expression level for association mapping. 

Genome-wide association mapping for module expression identified four SNPs associated with the 
expression of two modules (FDR < 0.1, Table 1) . We refer to these SNPs as ‘coexpression-eQTLs’. All four 
of the coexpression-eQTLs were also identified as eQTLs in the all-by-all analysis.  Two coexpression-eQTLs 
are associated with expression of the ‘lightyellow’ module and two with the expression of the ‘white’ module. 
(Figure 3, Table 1) . Both eQTLs for the ‘white’ module were located near each other (1.2 kb apart). We 
mapped the association between all SNPs (not just tagging SNPs) and ‘white’ module expression in this 
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region and found additional significant associations ( Figure 3B) , suggesting that there is a longer block of 
loci in linkage disequilibrium associated with module expression.  

We further investigated the gene containing the one coding coexpression eQTL, which is associated 
with expression of the ‘lightyellow’ module. This eQTL was in a 4-fold degenerate site of the gene 
Carubv10025970m. Its closest ortholog in Arabidopsis thaliana , AT5G65683.1 or WAV3 HOMOLOG 2 is a 
member of the WAVY GROWTH 3 E3 ligase family which is involved in root gravitropism but also shows 
expression in Arabidopsis young leaves. This coexpression eQTL is also associated with the expression of 93 
genes in the all-by-all analysis. All but one of these 93 genes was in the “light yellow” module. The minor 
allele frequency of this eQTL is 0.317.  

 
Relating coexpression modules to traits. 

We also conducted GWAS on phenotypic traits (days to bolting, days to flower, leaf nitrogen 
content, leaf carbon content and leaf shape traits) following the same procedures described above for 
coexpression modules. No associations were significant at a FDR < 0.1 or even at an FDR < 0.25. Module 
expression was correlated with a number of trait measurements. There were four modules whose expression 
was correlated with days to bolt ( Figure 4 , p < 0.05 after Bonferroni correction for 16 tests). None of the 
four coexpression eQTLs detected were significantly associated with any phenotypes. 
 
Population genetic signatures of selection on eQTLs. 

We compared signatures of selection around local and trans eQTLs identified by the all-by-all 
analysis and found that trans-eQTLs were in windows that had lower Tajima’s D on average (Tajima’s D = 
-0.596) than cis-eQTLs (Tajima’s D = -0.455, p < 0.0001), consistent with the regions around trans eQTLs 
being under stronger negative selection than regions around cis-eQTLs, although this could also result from 
differences in the genomic landscapes of trans-eQTLs compared to cis-eQTLs. 

While we have evidence that local cis-regulatory eQTLs are in general under negative selection in this 
population [9], and our present analysis suggests that all-by-all trans-eQTL are subject to stronger puriifying 
selection, we were curious if we could detect evidence of recent positive or balancing selection on eQTLs 
detected in the coexpression eQTL analysis as well as in the all-by-all analysis. We measured 𝛑 and Tajima’s D 
at putatively neutral sites across the genome in 500 bp windows and used SweeD to test for evidence of 
selective sweeps in 50 SNP windows. None of the coexpression eQTLs were located in windows that were 
outliers (top 2.5% of windows) for 𝛑, Tajima’s D, or sweep likelihood ( Fig. S4, Fig. S5, Fig. S6).  
 

Discussion 
 

In this study, we have mapped the genetic basis of genome-wide expression variation within a single 
population of an outcrossing plant. The allele frequencies of trans-eQTLs suggest that the variants that affect 
trans-regulation are under stronger negative selection than cis-eQTLs, and that trans-eQTLs associated with 
the expression of multiple genes are under stronger negative selection than trans-eQTLs associated with the 
expression of only one gene. In addition, windows containing trans eQTLs have lower Tajima’s D than 
window containing cis-eQTLs, also consistent with stronger negative selection acting on trans-eQTLs. 
However, despite the general pattern of negative selection acting on trans-eQTLs, we detected four eQTLs 
associated with the expression of coexpression network modules, one of which is independently associated 
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with the expression of 93 genes and present at an intermediate frequency. Overall, this work suggests that 
trans-eQTLs are under different selective pressures than cis-eQTLs, but that within trans-eQTLs there is also 
a great deal of variation in selection. 

Our results are consistent with previous work showing that distant eQTLs are at lower minor allele 
frequencies than local eQTLs in Arabidopsis thaliana [15] . However, the A. thaliana  result comes from 
association mapping done in a diverse panel of lines from across the species range where allele frequencies 
could be shaped by negative selection or local adaptation, so our results reflect a clearer indication that 
negative selection acts more strongly on trans-eQTLs than cis-eQTLs. In addition, the pattern that 
trans-eQTLs that are associated with the expression of multiple genes are at lower minor allele frequency than 
trans-eQTLs with only one association is consistent with evidence that negative selection acts more strongly 
on pleiotropic loci in C. grandiflora [34]  and in other species [13,38]. 

One important aspect of our use of coexpression modules in the eQTL analysis is that we used 
“genotype networks’ generated from expression data measured in the same tissue type at the same time in a 
set of genetically distinct individuals. Therefore, the coexpression modules we observed were shaped by 
genetic perturbations, not tissue or developmental differences. While coexpression measured across multiple 
timepoints (‘developmental networks’) has been linked to functional relationships [39,40], coexpression 
modules generated from genetically distinct individuals have different properties than those generated from 
different tissue types [17,41]. In some cases, this difference is helpful: analyses combining GWAS and 
coexpression networks have the most power when using coexpression networks made from genetically 
distinct samples [41]. However, it is important to keep in mind that the expression datasets used will affect 
coexpression modules. 

Mapping eQTLs has furthered our understanding of the nature of genetic variation maintained 
within natural populations. Analyses combining genomic and transcriptomic data from natural populations 
are relevant in the context of models using transcriptomic data to build a mechanistic understanding of the 
evolutionary forces maintaining variation within populations [42–44]. In addition, since gene expression is 
important for adaptive divergence [45–47], understanding the maintenance of genetic variation for expression 
is important for understanding how organisms will adapt to new environments. 

 

Materials and Methods 
 
Genomic, transcriptomic, and phenotypic data 

All genomic and transcriptomic sequence data was previously published in Josephs et al. (2015) and 
Josephs et al. (2017b). We briefly describe data generation here. We collected individuals from a single 
population of C. grandiflora individuals located near Monodendri, Greece. We conducted a generation of 
random crosses in the greenhouse, and then grew 146 individuals descended from these random crosses in a 
growth chamber with 16 hours of daylight at 22o C. We measured traits on these individuals and collected 
RNA from leaf tissue collected  39 days after planting. Leaves were collected and flash frozen at night 
sequentially in 9 roughly-equally sized bins, which we will refer to as “collection bin”. We extracted RNA 
using Qiagen RNAeasy kits.  

We extracted DNA from leaf material using a CTAB procedure. Both RNA and DNA was 
sequenced at the Genome Quebec facility with Hiseq 2000 with Truseq libraries with 100bp long reads. DNA 
was mapped to the standard C. rubella reference genome [48] with Stampy [49] and RNA was mapped to an 
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exon-only reference genome using Stampy as well. SNPs were called from the genomic sequence data using 
GATK Unified Genotyper [50] and expression levels were measured with HTseq and normalized for 
sequencing depth by dividing by the median expression level for each individual. [51]. We did not detect 
interactions between GC content, expression level, and lane [9]. We used the ComBat function from the sva 
R package to adjust expression level for collection batch [52]. 

In addition to collecting RNA and DNA for sequencing on these 146 individuals, we measured a 
number of phenotypes. We measured days to bolting and days to flowering daily (measured since planting 
date). We collected leaves at day 49 after planting, scanned leaves, and measured leaf shape as reported in 
[53]. Briefly, dissection index was calculated as DI = (perimeter 2)/(4π*area), so that a circle of the same area 
would have a value of 1.0 and increasing values indicate increasing complexity and alpha shape dissection 
index is a similar parameter, but for alpha shapes. We measured leaf carbon and nitrogen content in one leaf 
per individual. Leaves were collected at day 49 after planting, dried, and ground to powder for elemental 
analysis by the Ecosystems Analysis Lab at the University of Nebraska. We note that both shape and 
elemental data came from different leaves than the RNAseq data. We estimated Pearson and spearman 
correlations between module expression and trait values with the cor.test function in R [54]. 
 
Building coexpression networks 

We used the program WGCNA [55](version 1.68 running on R version 3.6.2) to identify 
coexpression modules present within the 145 transcriptomes using the expression level of all genes with 
median expression greater than 5 reads per gene (n = 18,806).  The coexpression analysis groups together 
genes with similar patterns of pairwise correlation of expression. We were interested in retaining the 
information embodied in the sign of the gene expression correlations, so we conducted a signed network 
analysis. We used a soft thresholding value of 12, as suggested by the authors of the WGCNA package for 
signed networks and a minimum module size of 30. Genes that exhibited similar patterns of connectivity (i.e., 
genes showing high “topological overlap”) were grouped together in the same coexpression modules, based 
on hierarchical clustering of topological overlap values, in which a dynamic branch-cutting algorithm was 
used to define initial gene co-expression modules. Module eigengenes (the first principal component of the 
gene expression values of modules) were calculated, and modules whose eigengenes were correlated at a level 
greater than 0.8 were merged to arrive at the final set of co-expression modules. The resulting modules were 
labeled with different colors for ease of referencing[34]. We investigated specific eQTLs in the Joint Genome 
Institute’s Phytozome v12.1 genome browser for Capsella rubella v1.0[48] and investigated specific orthologs in 
Arabidopsis thaliana using TAIR[56]. 

Some of the modules had expression levels that were very skewed, such that a few individuals 
showed extremely high module expression compared to the rest of the individuals (Fig S1) . To reduce 
potential false-positives in the association mapping study due to skewed expression levels, we quantile 
normalized module expression levels using the qqnorm function in R [54]. 
 
Association mapping 
We tested for associations between SNP genotype and individual gene expression, phenotypes, and module 
expression. For all association mapping analyses, we filtered out SNPs with a minor allele frequency below 
0.01 and more than 0.05 missing data, leaving 5,560,798 SNPs. We used Haploview to identify 1,873,867 tag 
SNPs with minor allele frequency > 0.05 that described the dataset. 
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We tested for associations between the tag SNPs with the expression of 18,806 genes using the linear 
model in Matrix eQTL [57]. We quantile normalized gene expression levels using the qqnorm function in R 
to reduce false positives caused by skewed expression distributions. While all samples came from the same 
population, we controlled for residual population structure by generating a centered kinship matrix with 
GEMMA [58] and including the first five principal components of the kinship matrix as covariates.. Since all 
tag SNPs were tested against all genes, we conducted 35,587,985,444 tests. Matrix eQTL estimates false 
discovery rates using a Benjamini–Hochberg procedure.  

After detecting eQTLs, we compared cis and trans eQTLs. We defined putative cis eQTLs as eQTLs 
that were less than 5 kB from the transcription start or end site of the gene they were associated with and 
trans eQTLs as eQTLs that were either on a different chromosome from the gene they were associated with 
or more than 5 kB away from the transcription start or end site of the chromosome. We compared the minor 
allele frequencies and effect sizes of eQTLs using the t.test function in R [54].  

We did association mapping with GEMMA [58] on module eigengenes (PC1 of expression values of 
a module), morphological, and life history traits as our phenotypes. We controlled for residual population 
structure using the standardized kinship matrix and SNPs with minor allele frequency > 0.05 and missing data 
< 0.05. We used the likelihood ratio p values [59] and calculated the p-value cutoffs corresponding to a false 
discovery rate of 0.1 for each trait and module expression level using the FDR method of the p.adjust 
function in R [60]. 
 
Population genetic signatures of selection  

We used genomic sequence from 188 individuals published in [9]. We downsampled all sites to 320 
chromosomes per site and then calculated pi and Tajima’s D in 500 bp windows across the genome at 
non-coding (excluding conserved non-coding sites from [61]), intronic, and 4-fold degenerate sites. We used 
SweeD to calculate the likelihood of a selective sweep occuring on every 50th SNP (windows were ~600 bp 
wide on average) using non-conserved intergenic, intronic, and 4-fold degenerate sites for 182 individuals 
from the focal population [62]. 
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Table 1: Information about significant coexpression eQTLs (FDR < 0.1). ‘CNS’ stands for ‘conserved 
noncoding sequence’, ‘MAF” stands for minor allele frequency 
 
 
Module SNP MAF p FDR Site Type 

lightyellow scaffold_7:17305936 0.093 1.03E-07 0.096 intergenic 

lightyellow scaffold_8:12634406 0.317 6.94E-09 0.013 exon 

white scaffold_4:12621988 0.066 2.86E-08 0.027 intergenic 

white scaffold_4:12623220 0.052 9.62E-09 0.018 CNS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

8 

.CC-BY 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted February 11, 2020. . https://doi.org/10.1101/763870doi: bioRxiv preprint 

https://doi.org/10.1101/763870
http://creativecommons.org/licenses/by/4.0/


 

Figures 
 
 

 
Figure 1: All-by-all eQTL locations. Each point represents a SNP, whose location is described on the X 
axis, that is associated with the expression of a gene whose location is described on the y axis (FDR < 0.1). 
Black points are SNPs that were also identified in the coexpression eQTL analysis. 
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Figure 2 Distribution of minor allele frequencies (MAF) of cis and trans eQTLs. 
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Figure 3: Physical locations of coexpression QTLs. Coexpression eQTLs are represented by white points 
with black borders. All other SNPs are plotted in gray. These plots include associations for all snps, not just 
the tagging snps, plotted by location, on the x axis, and the significance of association with the module 
indicated by color on the y axis.  The locations of nearby genes are shown by rectangles, colored by the 
module the gene is in. The direction of transcription of each gene is shown by a black arrow. A) The first 
coexpression eQTL on Scaffold 7, B) the second coexpression eQTl on scaffold 8, and C) the third and 
fourth coexpression eQTLs on Scaffold 4.  
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Figure 4: Correlations between module expression level and traits. The correlation between expression 
of each module (x axis) and days to flower  (y axis). If the correlation was significant (p < 0.05 after 
Bonferonni correction), there is a black trend line drawn. 
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Figure S1: The number of genes in each module.  
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Figure S2 . Relationship between collection box (x axis) and module expression (y axis) for 16 coexpression 
modules. Each point represents one plant.  
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Figure S3: Distribution of un-normalized eigengenes. Each plot shows a histogram of eigengene 
expression for a specific coexpression module. The module name is labeled below the x axis. 
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Figure S4 :  Diversity (𝛑) at putatively neutral sites in 500 bp windows around coexpression-eQTLs. Gray 
horizontal dotted lines show 95% cutoffs of the observed distribution of likelihoods and black vertical lines 
show the locations of eQTLs. Each panel corresponds to the eQTL shown in Fig. 3. 
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Figure S5 : Tajima’s D at putatively neutral sites in 500 bp windows around coexpression-eQTLs. Gray 
horizontal dotted lines show 95% cutoffs of the observed distribution of likelihoods and black vertical lines 
show the locations of eQTLs.. Each panel corresponds to the eQTL shown in Fig. 1. 
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Figure S6 : SweeD sweep likelihoods in windows around coexpression-eQTLs. Gray horizontal dotted lines 
show 95% cutoffs of the observed distribution of likelihoods and black vertical lines show the locations of 
eQTLs. Each panel corresponds to the eQTL shown in Fig. 1. 
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