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Abstract

Population genomic scans have emerged as a powerful tool to detect regions of the genome 
that are potential targets of selection. Despite the success of genomic scans in identifying novel 
lists of loci potentially underlying adaptation, few studies proceed to validate the function of 
these candidate genes. In this study, we used transfer-DNA (T-DNA) insertion lines to evaluate 
the effects of 27 candidate genes on flowering time in North American accessions of Arabidopsis 
thaliana. We compared the flowering time of T-DNA insertion lines that knock out the function of a 
candidate gene obtained from population genomic studies to a wild type under long- and short-
day conditions. We also did the same for a collection of randomly chosen genes that had not been 
identified as candidates. We validated the well-known effect of long-day conditions in accelerating 
flowering time and found that gene disruption caused by insertional mutagenesis tends to delay 
flowering. Surprisingly, we found that knockouts in random genes were just as likely to produce 
significant phenotypic effects as knockouts in candidate genes. T-DNA insertions at a handful of 
candidate genes that had previously been identified as outlier loci showed significant delays in 
flowering time under both long and short days, suggesting that they are promising candidates for 
future investigation.
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A central goal in evolutionary biology is to understand the genetic 
basis underlying ecologically important traits (Stinchcombe and 
Hoekstra 2008; Orr 2009; Hohenlohe et al. 2018). Population gen-
omic scans have emerged as a prominent approach to studying adap-
tation, especially, as the ability to gather genome-wide marker data 
has expanded (François et al. 2016). These scans typically involve 
surveying genetic variability across the genome to detect “outlier” 
loci with unusual patterns of divergence or polymorphism (relative 

to genome-wide averages or statistical hypothesis tests), which 
is interpreted to be due to selection (Weigel and Nordborg 2005; 
Stinchcombe and Hoekstra 2008; de Villemereuil et al. 2014; Ahrens 
et al. 2018). One potential advantage of population genomic scans is 
that they do not require a priori knowledge of the agents of selection 
or even the traits that were under selection (Hohenlohe et al. 2010), 
which may give a more unbiased picture of adaptation. Population 
genomic scans, however, are not a panacea. First, they are prone to 
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false discoveries and numerous statistical challenges, depending on 
sampling designs, statistical frameworks, and population structure 
(see e.g., Li et al. 2008; Schoville et al. 2012; Lotterhos and Whitlock 
2015; Capblancq et al. 2018). Second, many of the identified outlier 
loci or regions are never subjected to experimental or functional val-
idation (François et al. 2016; Talbot et al. 2017). Without functional 
assays, it is difficult to determine whether variation at the detected 
regions affects phenotypes or fitness or can be confidently linked to 
adaptation (Weigel and Nordborg 2015; Barrett and Hoekstra 2011; 
Pavey et  al. 2012). Here, we use gene knockouts in Arabidopsis 
thaliana to examine whether disrupting candidate genes identified 
through population genomic scans indeed affect phenotypes.

There are several potential ways to validate genes or genetic re-
gions identified in population genomics studies, including in vitro 
functional assays, fine-mapping, and genetic knockouts (Ballinger 
and Benzer 1989; Bouché and Bouchez 2001; Skarnes et al. 2011). 
These varied experimental approaches have at their core some ma-
nipulation of gene function; the phenotypes of the manipulated 
genotypes can then be compared to that of unmanipulated wild-type 
controls (Bouchez and Höfte 1998). For example, Colosimo et al. 
(2005) validated the positive effect of Eda, a previously identified 
candidate gene, on the number of lateral plates formed in the 3-spine 
sticklebacks (Gasterosteus aculeatus) by comparing individuals 
that carry an Eda transgene to control siblings. Similarly, a study 
on melanism in the deer mice (Peromyscus maniculatus) compared 
the coat color of an in vitro embryonic mice and a wild type and 
found that melanic hair is caused by a recessive allele in the Agouti 
locus (Kingsley et al. 2009). Genetic knockouts are commonly used 
in studies on model organisms such as Drosophila melanogaster, 
Caenorhabditis elegans, and A. thaliana; although similar resources 
are currently lacking in most nonmodel organisms (Skarnes et  al. 
2011; Ellegren 2014). In A. thaliana, gene knockouts are commonly 
generated by inserting agrobacterium-mediated transfer-DNA 
(T-DNA) into specific regions in the genome to disrupt gene function 
(Krysan et al. 1999). T-DNA insertions are chemically and physic-
ally stable over multiple generations, do not travel to other locations 
in the genome (Martienssen 1998; Østergaard and Yanofsky 2004), 
and often cause large, detectable effects on gene function (Krysan 
et al. 1999). Recent developments in CRISPR/CAS9 technology sug-
gest further possibilities for validating the effects of candidate re-
gions or loci (see Turner 2014), although to our knowledge this has 
not yet been applied to candidates identified by population genomic 
studies.

The ideal genetic evidence to determine if outlier loci are indeed 
responsible for differentiation would be to use some sort of gen-
etic modification (repeated backcrossing, transgenics, CRISPR, etc.) 
to move naturally occurring alleles into a isogenic test background. 
In this manner, the effects of a single allele on the phenotype can 
be verified. For many population genomics studies, however, this is 
likely to remain challenging. Most population genomic scans will 
obtain dozens to 100s of outlier loci; some method of prioritizing 
or triaging of candidate loci or regions will be required. We sug-
gest that use of knockouts such as T-DNA insertions is a useful 
screening tool to identify whether a gene, in principle, can affect 
the phenotype of interest. That is, a knockout or T-DNA insertion 
can allow an investigator to ask “does the presence or absence of 
this gene affect my phenotype of interest” rather than “does the ob-
served, naturally occurring variant affect the phenotype of interest?” 
Given the risk of false positives in population genomic scans, such 
a screening tool can be useful for identifying promising genes for 
future study about naturally occurring variants. The approach 

implicitly assumes that knocking out a gene entirely is more likely 
to have an effect on a phenotype than many naturally occurring mu-
tations (nonsynonymous mutations, frameshifts, premature start/
stop codons, etc.), such that the absence of an effect of a whole-gene 
knockout probably means that detailed genetic investigation of nat-
urally occurring variants at these genes is a lower priority.

Flowering is one of the most important plant life-history traits, 
as it determines a plant’s reproductive investment and ultimately its 
fitness (Srikanth and Schmid 2011). Flowering marks the transition 
from vegetative to reproductive phase of a plant, and thus the timing 
of flowering directly determines whether seed set is completed under 
favorable conditions (Andrés and Coupland 2012). The mouse-ear 
cress (Arabidopsis thaliana) is a popular model organism for ex-
ploring the timing of flowering in angiosperms (Koornneef et  al. 
2004). Consistent findings in the literature suggest that A. thaliana 
populations exhibit spatial clines in flowering time and that abiotic 
factors such as daylength, precipitation, and temperature contribute 
significantly to these clinal differences (Stinchcombe et  al. 2004; 
Cookson et al. 2007; Amasino and Michaels 2010; Munguía-Rosas 
et al. 2011). Natural variation in flowering time of different popula-
tions of A. thaliana suggests that flowering time is adapted to various 
environmental conditions (Amasino 2010; Srikanth and Schmid 
2011; Andrés and Coupland 2012). The genetic basis of flowering 
time has also been intensively studied in A.  thaliana (see Bloomer 
and Dean 2017 for a review). The effects of major genes that regu-
late flowering time (such as FLOWERING L C [FLC], FRIGIDA 
[FRI], PHYC, MAF2, etc.) as well as their expression in response to 
seasonal environmental cues have been extensively studied (Geraldo 
et  al. 2009; Kim et  al. 2009). Two major effect genes, FLC and 
FRI, are known to interact epistatically and explain up to 70% of 
flowering time variation in some accessions of A. thaliana (Caicedo 
et al. 2004; Shindo et al. 2005). Interestingly, polymorphism at FLC 
itself only explains a portion of its effects on flowering time, while 
its expression is significantly associated with flowering time: these 
data suggest that other loci influence expression of FLC and that 
expression influences flowering time (Sasaki et al. 2018). However, 
flowering time is a complex quantitative trait, and it is likely that 
there are many undiscovered genes with small effects that are also 
acting on this trait (Michaels 2009). It remains unknown how these 
undiscovered genes interact with environmental signals and other 
genes and what roles they play in molecular pathways leading to 
flowering (Adrian et al. 2009; Amasino 2010).

Using population genomic scans, Gould and Stinchcombe (2017) 
discovered novel candidate genes that are putatively linked to 
flowering time differentiation in the introduced range of A. thaliana. 
They tested for outlier loci that were highly differentiated between 
early- and late-flowering genotypes. Gould and Stinchcombe (2017) 
detected outlier single nucleotide polymorphisms (SNPs) or vari-
ants showing high XTX scores. XTX is a FST-like statistic measuring 
population differentiation, with a few key differences (see Gunther 
and Coop 2013). First, it accounts for variation and covariation in 
allele frequencies among populations, and uneven sampling among 
groups, which gives it greater power than traditional FST (Gunther 
and Coop 2013). The expected value for XTX is the number of 
groups being compared (i.e., 2 in the case of early- vs. late-flowering 
groups). Gould and Stinchcombe (2017) estimated the variance and 
covariance in allele frequencies across populations using ~3000 syn-
onymous SNPs. They then compared XTX scores for high-impact 
variants (start/stop codons, frameshift mutations, etc.) to the dis-
tribution of XTX values for ~20 000 synonymous SNPs. Gould and 
Stinchcombe (2017) identified candidate genes as those containing 
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SNPs with high XTX scores and those falling in the extremes of 
genome-wide distributions of either π or the cross-population com-
posite likelihood ratio (XP-CLR) test statistic. The outlier variants 
they detected were not enriched for a priori known or suspected 
candidate genes and are thus potentially novel loci. Despite the 
steps taken by Gould and Stinchcombe (2017) to guard against false 
positives (conditioning on covariation in allele frequencies among 
populations, comparison of high-impact and synonymous SNP XTX 
scores, requiring other population genetic evidence of a selective 
sweep), an important next step is to experimentally validate that 
variation at these genes can, in principle, affect flowering time.

In this study, we used T-DNA insertion lines to evaluate the 
phenotypic effects of gene disruption in 27 of the candidate genes 
for flowering time in North American accessions of A.  thaliana 
identified by Gould and Stinchcombe (2017). Because flowering is a 
quantitative trait that integrates multiple environmental and genetic 
signals and across growth and development from germination to the 
onset of flowering, we also selected 27 T-DNA insertion lines chosen 
at random to serve as a point of comparison for the overall effects 
of T-DNA insertion. We compared the phenotype of each T-DNA 
insertion line to the wild type to infer the effects of targeted gene dis-
ruption on flowering time under both short and long-day conditions. 
Collectively, we found that T-DNA insertions tend to delay flowering 
relative to the wild type and that the phenotypic effects of T-DNA 
insertions are correlated across daylength environments. While we 
failed to detect differences in the mean effect size of knocking out 
candidate genes versus genes chosen at random, we were able to 
validate that T-DNA insertion has strong, consistent, and significant 
effects on flowering time for a handful of candidate and randomly 
chosen genes.

Methods

T-DNA Insertion Lines
The SALK Institute Genome Analysis Laboratory (SIGnAL) gener-
ated T-DNA insertion lines in the Columbia background (Col-0) 
for approximately 75% of the A.  thaliana genome (Alonso et  al. 
2003). Some T-DNA insertion collections (e.g., GABI-Kat, SAIL, 
WiscDsLox) generated by other Arabidopsis knockout facilities also 
cover parts of the remaining 25% of the genome (Sessions et  al. 
2002; Woody et  al. 2007; Kleinboelting et  al. 2012). The T-DNA 
lines are sometimes referred to as a “unimutant” collection, although 
many contain more than one insertion (O’Malley and Ecker 2010; 
Valentine et al. 2012). While investigations of the phenotypic effects 
of multiple insertions are rare, Rutter et al. (2017) found no relation-
ship between insertion number and fitness (fruit number) in a sample 
of 113 T-DNA insertion lines. We attempted to mitigate the effects 
of lines containing multiple insertions by choosing GABI-Kat lines 
guaranteed to have a single insertion and prioritizing T-DNA lines 
that had been verified by next-generation sequencing. We obtained 
T-DNA insertion lines from the Arabidopsis Biological Resource 
Center and the Nottingham Arabidopsis Stock Centre; preliminary 
analyses indicated no significant differences between types of T-DNA 
insertion lines (e.g., GABI-Kat vs. others). For 27 of the candidate 
genes, we selected one T-DNA insertion line that targeted exonic re-
gions in the Col-0 background and was homozygous at the targeted 
region. Based on these criteria, we also selected a set of T-DNA lines 
at random sites across the genome that matched the chromosomal 
distribution of candidate genes. We consider consistent differences 
between a T-DNA line and the wild-type control in both treatments 

as evidence that a gene potentially warrants further study as a can-
didate. We use the T-DNA insertions in random lines as a point of 
comparison to determine whether insertions at candidates identified 
through differentiation and patterns of nucleotide diversity differ in 
any obvious way from a random sample in their phenotypic effect 
size, consistency across environments, or direction of effects.

We verified that the T-DNA insertion lines were homozygous at the 
insertion site with polymerase chain reaction (PCR) and agarose gel 
electrophoresis analyses. We first stratified seeds in 0.15 mg/100 mL 
agarose solution at 4  °C for 5 days and then germinated seeds in 
soil in a growth chamber at 16-h day cycles (22/20  °C day/night 
temperature). We extracted genomic DNA from leaves of 4-week-
old seedlings using Qiagen DNeasy Plant Mini Kits (Qiagen Inc., 
Toronto, Canada). We then performed PCR using target-specific pri-
mers designed by the SIGnaL and protocol developed by Joly-Lopez 
et al. (2016); we visualized reaction products on an agarose gel to de-
termine the genotype of each insertion line. We gathered selfed seeds 
from 27 candidates and 27 random lines verified to be homozygous 
at the insertion site for experimental work (see Supplementary Table 
S1) as well as selfed seeds from the wild-type control (CS70000) 
under the same long-day environmental conditions.

Common Garden Experiment
We planted seeds set by the 54 verified T-DNA insertion lines along-
side the Col-0 ecotype (which served as the wild-type control) in 
4 programmable growth chambers. Because daylength is known 
to affect flowering time in A. thaliana and the Samis et al. (2012) 
and Gould and Stinchcombe (2017) studies of North American 
A.  thaliana used flowering time from outdoor experiments with 
naturally changing daylengths, we included 2 daylength treatments 
in our common garden experiment. We used 2 long-day chambers 
(16/8-h light/dark cycle; 22/20  °C day/night temperature) and 2 
short-day chambers (8/16-h light/dark cycle; 22/20  °C day/night 
temperature). We replicated chambers to ensure that daylength ef-
fects were not confounded with chamber effects.

To synchronize germination, we stratified seeds in 
0.15 mg/100 mL agarose solution for 7 days at 4 °C. We then planted 
each seed into a standard conetainer with saturated Sunshine Mix 
#1 soil (Sun Gro Horticulture, Agawam, MA). In each chamber, we 
grew 8 replicates for each of the 55 genetic lines in a randomized 
block design, yielding 440 plants per chamber (N  =  1760 experi-
mental plants in the 4 chambers); blocks corresponded to shelves 
on the chamber. The experiment spanned a 4-month period, during 
which we watered plants every 5 days by saturating soil in standing 
trays of water for approximately 3 h. Throughout the experiment, 
we monitored the plants regularly, recording bolting date (visible dif-
ferentiation of the apical meristem) and flowering date. We measured 
flowering time as the number of elapsed days between germination 
and flowering date.

Data Analysis

Plastic Responses to Daylength Treatment
We first assessed the effects of daylength treatment, genotype, their 
interaction, and growth chamber on flowering time using the fol-
lowing nested, mixed-model analysis of variance (Anova; lme4, R):

log10 (flowering time) = daylength+ genotype+ daylength

× genotype+ chamber (treatment)
� (1)
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where flowering time (log10-transformed) was modeled as the de-
pendent variable, with fixed effects of daylength treatment, geno-
type (i.e., the T-DNA lines and the control), and their interaction; 
growth chamber nested within daylength treatment was included as 
a random effect. In this model, the daylength effect tests for plastic 
responses to the treatment, the genotype effect tests for genetic vari-
ation in flowering time among all the lines used, and the daylength × 
genotype term tests for genetic variation among the T-DNA lines in 
their plastic flowering response to daylength. We designated line as a 
fixed effect because the candidate genes and hence T-DNA insertion 
lines were chosen a priori.

We took several steps to satisfy the assumptions of an Anova-based 
model. First, we excluded outliers that were greater than 4 standard 
deviations from the mean in each treatment and thus eliminated 12 
observations (0.7%) from the data set (compared to an expectation of 
0.006% of the data under normality). These 12 outliers came from 10 
T-DNA insertion lines each with 1 or 2 replicates, indicating that this 
procedure did not lead to differential elimination of T-DNA lines. We 
nevertheless verified that removing the outliers did not significantly af-
fect the results of our hypothesis tests. We analyzed log10-transformed 
data for all hypothesis tests (both flowering time and log10-transformed 
flowering time were significantly different from normal), although we 
present results and figures on the original scale for clarity. We verified 
the results of hypothesis tests for the model above with randomization 
tests using procedures developed by Cassell (2002) in SAS software. In 
short, we randomly reshuffled flowering time (without replacement), 
assigned it to dependent variables, and fit model (1) with Proc Mixed 
(SAS v. 9.4); we repeated this reshuffling and model fitting 1000 times 
to estimate how often we would obtain results by chance alone (i.e., 
when there is only a randomly assigned relationship between flowering 
time and the independent variables). Results from parametric tests 
matched those using randomization and thus we present the former.

Comparing T-DNA Insertion Lines to Wild-Type Control
After verifying that there were significant treatment and treatment 
by line interactions, we performed follow-up analyses within each 
daylength treatment to examine whether the T-DNA insertion lines 
differed significantly from wild-type controls. We included chamber, 
genetic line, and their interaction in the following fixed effects Anova 
for flowering time:

log10 (flowering time) = chamber+ line+ chamber × line
�

(2)

For these analyses, we initially included the type of T-DNA insertion 
line (candidate or random) as a fixed effect nested within genetic line 
to test whether there was an overall difference between randomly 
selected lines and candidate lines within a daylength treatment. We 
failed to detect significant effects of the type of T-DNA insertion line on 
flowering time and subsequently dropped this term from our models. 
From model (2), we tested whether each T-DNA insertion line differed 
from the wild type using a Dunnett’s test. The Dunnett’s test controls 
the maximum experiment-wise error rate at the specified level of α 
(0.05), which prevents the inflation of Type-I error from multiple com-
parisons and thus the need to control for multiple comparisons using 
approaches like Bonferroni corrections. The Dunnett’s test is designed 
specifically for comparing the mean of one group against a control (i.e., 
T-DNA lines vs. wild type), rather than all groups against each other 
(Dunnett 1955; see Moyle and Graham 2005 for an example in the 
context of genetics). Because we had equal sampling of wild type and 
T-DNA lines, rather than allocating more replicates to the wild type, 
we expect these Dunnett’s tests to be conservative.

Comparison of T-DNA Effects and Population Genetic 
Differentiation
We next evaluated the similarity between the effects of T-DNA inser-
tion in the 2 environments and whether there was any relationship 
between the phenotypic effects and the population genetic evidence 
that led a gene to be identified as a candidate. We compared the 
phenotypic effects of a T-DNA insertion under short days to that 
under long days using the deviation between the T-DNA insertion 
line and the control as the phenotype in each environment. For this 
analysis, we examined the correlation between the effect size of a 
T-DNA insertion under long days with its effects under short days.

Second, we evaluated whether there is a correlation between the 
phenotypic effects of the T-DNA insertion lines and the XTX scores 
of their corresponding genes reported by Gould and Stinchcombe 
(2017). For the candidate genes, we used the XTX scores in Gould and 
Stinchcombe (2017), which were used to identify the genes as candi-
dates; for the random genes, we calculated XTX scores from Gould 
and Stinchcombe’s (2017) data. In the case of genes having multiple 
outlier variants, we selected the variant with the highest XTX score 
following Gould and Stinchcombe (2017) for consistency. In total, 
XTX scores were available for 48 of the 54 phenotyped T-DNA lines. 
Missing XTX scores were either the result of the absence of outlier 
variants in the loci or large deletions that hindered the detection of 
outlier variants in the region (Gould and Stinchcombe 2017).

Results

Plasticity and G×E for Flowering Time
As is well described for A.  thaliana (e.g., Cookson et  al. 2007; 
Andrés and Coupland 2012), we found a plastic response to long 
days of accelerated flowering. Plants under the long-day treat-
ment flowered significantly earlier than those in the short-day 
treatment (mean ± standard error: long day 30.04 ± 0.07 days, 
short day 72.44  ± 0.18  days; P  <  0.001; Table 1). The Anova 
model also showed that there were significant genetic line and 
genetic line by treatment interaction (both P < 0.0001; Table 1), 
indicating genetic variation in flowering and in the plastic re-
sponse to daylength.

We subsequently analyzed the effects of T-DNA insertion 
lines on flowering time separately for each daylength treatment. 
We again found significant genetic line effects, as well as signifi-
cant chamber effects in both the long- and short-day treatments 
(all P < 0.0001; Table 2). However, we did not detect any line by 
chamber interaction in either treatment (both P > 0.2; Table 2). 
The significant chamber term suggests subtle microenvironmental 
differences (e.g., light intensity, humidity, precision of temperature 
control) between the 2 chambers for each treatment, but these ef-
fects did not differ across genetic lines (due to the absence of a line 
by chamber interaction).

Table 1.  Mixed-model Anova for flowering time (days), including 
the effects of treatment, genetic line, and treatment by genetic line 
interaction on flowering time. A random effect of chamber nested 
within treatment was included to account for chamber effects but 
is not presented

Model term F P

Treatment F1, 2 = 2033.02 P = 0.0005
Line F54, 1538 = 8.63 P < 0.0001
Line × treatment F54, 1538 = 2.85 P < 0.0001
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Candidate and Random T-DNA Insertion Lines Have 
Similar Effects
We first tested whether candidate and random T-DNA insertion lines 
differed in their effects on flowering time with the expectation that 
candidate lines would have larger phenotypic effects relative to lines 
that were selected at random loci. To our surprise, the analyses re-
vealed that the type of T-DNA insertion line (candidate or randomly 
selected) had no significant effects on flowering time in models 
including both treatments or separated by treatment (all P > 0.1).

T-DNA Insertion Lines Delay Flowering Time Under 
Both Daylengths
The majority of T-DNA insertion lines delayed flowering relative to 
the wild type, and this was consistent in both the long- and short-day 
treatments (Figure 1). In the long-day treatment, 24 insertion lines 
(44%, 13 candidate and 11 random) significantly delayed flowering 
time, while in the short-day treatment, 7 insertion lines (13%, 4 
candidate and 3 random) flowered significantly later than wild type 
(Figure 1; Supplementary Table S2).

We identified 3 candidate and 2 random T-DNA insertion 
lines with substantial effects on flowering time phenotype rela-
tive to the wild type (candidate genes: AT2G43190, AT4G26095, 
and AT5G59930; random genes: AT1G17860 and AT2G25870; 
Supplementary Table S2). The 5 T-DNA insertion lines significantly 
delayed the timing of flowering in both treatments (Supplementary 
Table S2). The phenotypic effects of these lines range from 2.0 
to 5.6  days (7% to 19%) in the long-day treatment and 5.4 to 
13.6 days (8% to 19%) in the short-day treatment (Supplementary 
Table S2).

Table 2.  Anova for flowering time in the 2 separate treatments

Long-day treatment Short-day treatment

Model term F P F P

Chamber F1,765 = 37.82 P < 0.0001 F1,665 = 53.17 P < 0.0001
Line F54, 765 = 5.91 P < 0.0001 F54, 665 = 5.26 P < 0.0001
Chamber × line F54, 765 = 1.15 P = 0.22 F54, 665 = 0.99 P = 0.49
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Figure 1.  Bar graphs illustrating the phenotypic effects of candidate (top) and random (bottom) T-DNA insertion lines on flowering time relative to the wild type 
in the long- and short-day treatments. Positive values represent delay in flowering time, while negative values represent acceleration. T-DNA insertion lines are 
ordered by their position in the genome (left to right: chromosome 1 to chromosome 5; also see Supplementary Table S1). Error bars represent standard error.
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Correlated Effects of T-DNA Insertions Across 
Environments
We found that the phenotypic effects of gene disruption using 
T-DNA insertion lines were correlated between long- and short-day 
conditions—T-DNA insertion lines with large effects on flowering 
time under long-day conditions also had large effects under short-
day conditions (Figure 2). Candidate and random T-DNA inser-
tion lines showed similar patterns (candidate: rg = +0.49, P < 0.01; 
random: rg = +0.49, P < 0.01). Many T-DNA insertion lines (65%) 
had larger effects on flowering time in the short-day treatment rela-
tive to that in the long-day treatment (Supplementary Table S2). 
There was much higher variance in flowering time of A.  thaliana 
growing under short days, whereas those grown under long-day con-
ditions exhibited more synchronized flowering time.

Genetic Differentiation is Unrelated to Phenotypic 
Effect Size
We next evaluated whether there is a correlation between the cal-
culated XTX scores reported by Gould and Stinchcombe (2017) 
and the phenotypic effects of their corresponding T-DNA insertion 
lines. We detected weak rank correlations between XTX scores and 
phenotypic effects of T-DNA insertion lines in both the long- and 
short-day treatments (Figure 3; Supplementary Table S3). Although 
candidate genes had much higher XTX scores than random genes 
(which is how they were defined as candidate genes in the first place), 
we found similar relationships between differentiation at a region 
(XTX score) and the phenotypic effect of knocking it out for both 
types of loci. The rank correlations between XTX values and pheno-
typic effects were low and nonsignificant (Figure 3; candidate in long 
days: r = −0.02, P = 0.9; candidate in short days: r = +0.16, P = 0.4; 
random in long days: r  =  −0.04, P  =  0.9; random in short days: 
r = +0.19, P = 0.4). Neither the pattern nor the significance of these 
results changed when we used Pearson correlations. As an alternative 
means of investigating this, we also searched the A. thaliana GWAS 
database (https://aragwas.1001genomes.org/#/) to determine if any 

of the outliers identified by Gould and Stinchcombe (2017) were 
identified to be associated with flowering time in (mainly) European 
samples. We failed to find any GWAS hits, which is perhaps unsur-
prising given the number of unique SNPs Gould and Stinchcombe 
(2017) identified.

Discussion

Our experiment knocking out candidate genes for flowering time 
in A. thaliana using T-DNA insertion lines revealed 3 major results. 
First, gene disruption through T-DNA insertions almost universally 
delayed flowering time relative to the wild type. Second, we failed to 
detect significant differences between the phenotypic effects of can-
didate and random T-DNA insertion lines on flowering time or a re-
lationship between the phenotypic effects of gene disruption and the 
level of population genetic differentiation at mutations in these genes 
that led to their identification as candidates. Finally, we identified 
several T-DNA insertion lines that significantly delayed flowering 
time under both long- and short-day conditions. The genes disrupted 
by these T-DNA insertion lines are excellent targets for future studies 
on the genetic basis of flowering time adaptation in North American 
accessions of A. thaliana. We discuss these results in turn.

T-DNA Insertion Lines Tend to Delay Flowering Time
The majority of T-DNA insertion lines—both candidate and random 
lines—caused delays in flowering time relative to the wild type in 
the common garden experiment. Results from the Dunnett’s tests re-
vealed that 24 of the 54 T-DNA insertion lines (44%) in the long-day 
treatment as well as 7 lines (13%) in the short-day treatment sig-
nificantly affected flowering time compared to the wild-type con-
trol, all of which caused delays in flowering time phenotype. None 
of the T-DNA insertion lines flowered significantly earlier than the 
wild type under either daylength treatments. The extent of delays 
exhibited by T-DNA insertion lines was as large as 5.6 days (+19%) 
under long-day conditions and 13.6 days (+19%) under short-day 
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Figure 2.  Scatter plot illustrating the phenotypic effects of T-DNA insertion lines on flowering time in the long- versus short-day treatment. Red dots represent 
line means for candidate T-DNA insertion lines; blue dots represent line means for random T-DNA insertion lines. Error bars represent standard error in each 
daylength treatment, while rg-values represent correlation coefficient of candidate or random T-DNA insertion lines.
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conditions. What can explain this tendency for T-DNA insertion to 
delay flowering time and how does this compare to past work?

One possible explanation of the direction of our results is a com-
bination of genetic background and growth conditions. All T-DNA 
insertion lines selected for this study were generated in the ecotype 
Col-0, which is known to be an early flowering accession (Kim et al. 
2004). Many naturally occurring accessions of A. thaliana are late 
flowering due to their requirement for a prolonged period of cold 
(known as vernalization) to initiate floral transitions (Henderson 
and Dean 2004). Flowering prior to vernalization is inhibited by 
synergistic interactions of the loci FLC and FRI (Amasino and 
Michaels 2010). However, rapid cycling accessions of A.  thaliana, 
such as Col-0, carry loss-of-function mutations in FRI, which then 
reduces the expression of FLC, thus leading to early flowering even 
in the absence of vernalization (Michaels and Amasino 1999; Ding 
et  al. 2013). One consequence of this is that screens of mutant 
phenotypes are more challenging in early flowering backgrounds like 
Col-0, although most genetic resources such as T-DNAs are in this 
background. In an early flowering background, mutations or gene 
disruptions that affect flowering time may be more likely to lead to 
delays than acceleration. In similar fashion, our growth conditions 

may have led to earlier flowering (even under short days)—com-
pared to over-wintering plants that might experience much express 
much longer lifespans under ecologically realistic conditions. Under 
ecological conditions leading to longer life spans, some of the gene 
disruptions that we studied could lead to accelerated flowering. 
Testing these hypotheses would require first, screening T-DNAs or 
other gene disruptions in a late-flowering background, or second, 
using ecologically realistic planting conditions likely to lead to over-
wintering and longer life spans.

The closest point of comparison in the literature to our experi-
ment is a set of studies by Rutter and colleagues (Rutter et al. 2010, 
2012; Valentine et al. 2012; Roles et al. 2016; Rutter et al. 2017), 
although their focus was on how mutations affected fitness compo-
nents rather than flowering time. Across a set of mutation accumu-
lation (MA) studies, they found significant and appreciable G×E for 
fitness components (Rutter et al. 2012; Roles et al. 2016), which is 
qualitatively similar to our finding of G×E for flowering time, al-
though the mutations produced by MA procedures are likely to be 
radically different than T-DNA insertions. In their MA studies, they 
found that mutations were likely to both increase or decrease fitness 
(Rutter et al. 2010), which is in contrast to our finding of T-DNAs 
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Figure 3.  Correlation between XTX scores calculated by Gould and Stinchcombe (2017) and phenotypic effects of T-DNA insertion lines on flowering time in the 
long- (top) and short-day (bottom) treatments. Red dots represent line means for candidate T-DNA insertion lines; blue dots represent line means for random 
T-DNA insertion lines.
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predominantly delaying flowering. Interestingly, they note that 
this could be an artifact of MA lines being derived from the early 
flowering ecotype, Col-0, that is adapted to lab rather than field con-
ditions. In the most directly comparable studies, they found that be-
tween 10% and 40% of T-DNA mutations altered fitness compared 
to the wild type (Rutter et al. 2017), which is similar to the range 
we find for flowering time. Like us, they also found G×E for fitness 
in T-DNA lines, along with a generally positive correlation across 
environments (Rutter et al. 2017).

T-DNA Insertions in Candidate and Random Genes 
Show Similar Effects
We included a set of random T-DNA insertion lines in the experi-
ment to control for the effects of gene disruption through insertional 
mutagenesis. We expected candidate T-DNA insertion lines to have 
larger phenotypic effects on flowering time compared to that of 
the random lines. However, Anova results suggested that the type 
of T-DNA insertion line (candidate or random) has no effect on 
flowering time phenotype. In fact, candidate and random T-DNA 
insertion lines behaved similarly under both long- and short-day 
conditions, with strikingly similar degree of phenotypic effects on 
flowering time. The lack of significant difference between candi-
date and random gene disruption implies that the effects of gene 
disruption on outlier loci were similar to that observed simply by 
chance from any gene disruption in the genome. Moreover, previ-
ously calculated XTX scores for the candidate and random genes 
did not seem to be correlated with the phenotypic effects of their 
respective T-DNA insertion lines. We expected T-DNA insertion lines 
corresponding to genes with relatively higher XTX scores to have 
larger phenotypic effects on flowering time. The similar phenotypic 
patterns shown by candidate and random T-DNA insertion lines as 
well as the mismatch between XTX scores and phenotypic effects of 
knockouts at the genes could be explained by the possible false dis-
covery of candidate genes, complex nature of flowering time adap-
tation, or the potential limitation of gene knockouts in mimicking 
natural mutations.

One possible explanation to the lack of differences between can-
didate and random T-DNA insertion lines is that the candidate genes 
identified by Gould and Stinchcombe (2017) were false positives and 
thus do not represent true targets of selection on flowering time. 
Gould and Stinchcombe (2017) pointed out that the population gen-
omic tests used to identify the 27 candidate genes we studied here 
might not have much power due to its small sample size (see Gould 
and Stinchcombe 2017). If the set of candidate genes were not as-
sociated with flowering time adaptation, it would be reasonable to 
detect no difference between their effects on the phenotype and a 
set of genes selected randomly across the genome. Nevertheless, the 
use of multiple test statistics by Gould and Stinchcombe (2017) as 
well as their comparison of XTX scores to the genome-wide distribu-
tion obtained from synonymous SNPs should reduce the rate of false 
positives (Lotterhos and Whitlock 2015). Therefore, it is worth con-
sidering whether there are other reasons behind the parallel pheno-
typic effects of candidate and random genes.

Another potential explanation is that flowering time is an ex-
tremely complex quantitative trait, and hence many mutations could 
potentially lead to changes in the phenotype (Mackay et al. 2009). 
Flowering time defines an angiosperm’s shift from a vegetative to 
reproductive stage. Therefore, the timing of flowering integrates all 
life-history events that happens in the life cycle before reproduc-
tion (Bergelson and Roux 2010). For instance, Samis et al. (2012) 

found positive correlations between the number of rosette leaves, 
rosette diameter, and flowering time in both the introduced and 
native ranges of A.  thaliana. Similarly, Debieu et al. (2013) found 
strong patterns of covariation among 3 major life-history traits: seed 
dormancy, vegetative growth rate, and flowering time in A. thaliana 
along a latitudinal cline. They also found complex genetic architec-
tures underlying the correlated life-history traits. These correlations 
(if they are due to pleiotropy or tight linkage disequilibrium) sug-
gest that variation in a single locus could have cascading effects on 
the phenotype of all correlated traits. Hence, mutations at loci that 
affect any correlated traits could potentially affect the outcome of 
flowering time in a cumulative manner (Salomé et  al. 2011). This 
could explain why many loss-of-function mutations at randomly 
selected genes caused a significant delay in flowering time relative 
to the wild type in the experiment and why random genes seemed 
similar to candidate genes in their degree of control over flowering 
time phenotype.

It is also possible that while the random T-DNA insertions may 
affect flowering in the lab, mutations in these genes might be selected 
against in nature. Our screen focused primarily on flowering time, 
and as a consequence we were not able to evaluate other quantitative 
traits that might affect fitness or fitness components such as fruit and 
seed number, seed dormancy and germination, performance in the 
seed bank, or early establishment under natural conditions. It may 
be that mutations at the random genes targeted by T-DNAs in our 
experiment can in principle have an effect on phenotypes but that 
any such mutations would be strongly selected against under natural 
conditions. Testing this hypothesis would require measuring the fit-
ness consequences of random T-DNA insertions, much like Valentine 
et al. (2012) and Rutter et al. (2017).

T-DNA insertion lines may also not be the best at mimicking 
natural mutations detected in natural accessions or populations of 
A. thaliana. T-DNA insertion lines cause a loss-of-function mutation 
by introducing a large T-DNA fragment (~1 kb) in the targeted locus 
(O’Malley et al. 2015). However, outlier variants found by Gould 
and Stinchcombe (2017) represent various forms of mutations such 
as SNPs, indels causing frameshifts or gain/loss of start/stop codons, 
large deletions that are up to ~9 kb, and so forth (see Supplementary 
Table S2 in Gould and Stinchcombe 2017). While gene knockouts 
may be powerful for studying natural mutations that cause the in-
activation of gene function (e.g., frameshifts, large indels), they 
may not best reproduce the phenotypic effects of smaller-scale 
nonsynonymous mutations (e.g., SNPs, small indels) that result in 
changes in amino acid sequences rather than complete silencing of 
the gene (Matus et al. 2014). Thus, while 1-kb knockouts may have 
similar effects on phenotypes if placed in candidate genes or random 
genes, mutants that are more similar to those observed in nature may 
indeed show a difference. Testing this hypothesis would require the 
ability to perform mutagenesis that would more accurately mimic 
the natural spectrum of mutations or alternative genetic approaches 
such as transformation.

Future Directions: Following Up on Promising Genes
Despite potential limitations in T-DNA insertion lines in mimicking 
natural nonsynonymous mutations, the loss-of-function muta-
tions at several genes that we studied have substantial effects on 
flowering time under both treatments, which suggests a potential 
relationship between these genes and flowering time. Three candi-
date and 2 random T-DNA insertion lines caused significant delays 
in flowering time compared to the wild type under both long- and 

452� Journal of Heredity, 2019, Vol. 110, No. 4
D

ow
nloaded from

 https://academ
ic.oup.com

/jhered/article/110/4/445/5510478 by U
niversity of Toronto Libraries user on 22 Septem

ber 2020

http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz026#supplementary-data
http://academic.oup.com/jhered/article-lookup/doi/10.1093/jhered/esz026#supplementary-data


short-day conditions (candidate genes: AT2G43190, AT4G26095 
and AT5G59930; random genes: AT1G17860 and AT2G25870). 
The 3 candidate genes include AT2G43190, which encodes for a 
protein involved in ribosomal RNA processing; while AT4G26095 
is a potential natural antisense gene and AT5G59930 encodes for a 
Cysteine/Histidine-rich C1 domain family protein. The XTX scores 
of AT4G26095 and AT5G59930 were approximately in the 80th 
and 70th percentiles for all outlier variants detected by Gould and 
Stinchcombe (2017), further suggesting these genes as a potential 
target of selection. The list of random genes consists of AT1G17860, 
a gene that stops or reduces the activity of an endopeptidase, and 
AT2G25870, a gene that controls rRNA processing in the chloro-
plast (information from https://www.arabidopsis.org/).

Furthermore, transgenic experiments can be conducted utilizing 
the alleles associated with early- and late-flowering time detected by 
Gould and Stinchcombe (2017). For instance, early flowering alleles 
could be transgenically introduced into a late-flowering accession 
and vice-versa. Moreover, these early- or late-flowering alleles could 
be separately introduced into the ecotype Col-0 to better understand 
their functions on flowering time in an identical genetic background. 
The available genomic database and genetic tools will facilitate our 
understanding of the genetic basis of flowering time adaptation in 
the introduced range of A. thaliana.

Supplementary Material

Supplementary material is available at Journal of Heredity online.
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