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Abstract

A mechanistic understanding of community ecology requires tackling the nonaddi-

tive effects of multispecies interactions, a challenge that necessitates integration of

ecological and molecular complexity—namely moving beyond pairwise ecological

interaction studies and the “gene at a time” approach to mechanism. Here, we

investigate the consequences of multispecies mutualisms for the structure and func-

tion of genomewide differential coexpression networks for the first time, using the

tractable and ecologically important interaction between legume Medicago truncat-

ula, rhizobia and mycorrhizal fungi. First, we found that genes whose expression is

affected nonadditively by multiple mutualists are more highly connected in gene

networks than expected by chance and had 94% greater network centrality than

genes showing additive effects, suggesting that nonadditive genes may be key play-

ers in the widespread transcriptomic responses to multispecies symbioses. Second,

multispecies mutualisms substantially changed coexpression network structure of 18

modules of host plant genes and 22 modules of the fungal symbionts’ genes, indi-

cating that third-party mutualists can cause significant rewiring of plant and fungal

molecular networks. Third, we found that 60% of the coexpressed gene sets that

explained variation in plant performance had coexpression structures that were

altered by interactive effects of rhizobia and fungi. Finally, an “across-symbiosis”

approach identified sets of plant and mycorrhizal genes whose coexpression struc-

ture was unique to the multiple mutualist context and suggested coupled responses

across the plant–mycorrhizal interaction to rhizobial mutualists. Taken together,

these results show multispecies mutualisms have substantial effects on the molecu-

lar interactions in host plants, microbes and across symbiotic boundaries.
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coexpression network analysis

1 | INTRODUCTION

As members of complex communities, organisms face diverse inter-

actions throughout their lifecycle that strongly shape their traits, life

history strategies, behaviours and fitness, often in complicated, non-

additive ways (Afkhami, Rudgers, & Stachowicz, 2014; Herrera,

2000; Lively, de Roode, Duffy, Graham, & Koskella, 2014; McKeon,

Stier, McIlroy, & Bolker, 2012; Pohl, Carvallo, Botto-Mahan, &

Medel, 2006; Sih, Englund, & Wooster, 1998; TerHorst et al., 2015).

Organisms are enmeshed not only in a matrix of negative associa-

tions, like competition and predation, but also positive interactions

with diverse and ubiquitous mutualistic communities that provide
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crucial benefits. A growing number of empirical studies have shown

that the effects of multiple mutualists on host fitness and traits can

be nonadditive (Afkhami & Stinchcombe, 2016; Brittain, Williams,

Kremen, & Klein, 2013; Gustafson & Casper, 2006; Lau & Galloway,

2004; Ossler, Zielinski, & Heath, 2015; Palmer et al., 2010). For

example, Stachowicz and Whitlatch (2005) detected synergistic

effects of two gastropod species on the growth of their algal host;

because each gastropod partner defended the alga against a distinct

group of herbivores, both gastropods were required for algal growth.

Theoretical and empirical work suggests that the nonadditivity gen-

erated by multiple mutualistic interactions can result from comple-

mentary rewards from distinct partners that lead to synergistic

effects on the host’s growth. However, nonadditivity due to multiple

mutualistic interactions can also lead to very costly, antagonistic

effects. In the latter case, competition among partner species over

access to a limited host-provided resource could result in reduced

partner efficacy or even host exploitation (Afkhami et al., 2014;

Stanton, 2003).

Understanding how organisms regulate interactions in communi-

ties in which nonadditive outcomes are common is a considerable

challenge that requires study and integration across many levels of

biological organization. In community ecology, theory and empirical

studies strive to determine the environmental factors (Warfe & Bar-

muta, 2004), natural history characteristics of participating species

(Palmer et al., 2010) and other ecological mechanisms (Griffen &

Byers, 2006) that lead to different types of nonadditive and additive

outcomes of multispecies interactions. For instance, species and

genotype diversity of plant communities can generate substantially

higher productivity, resilience and stability of communities and

ecosystems due to resource partitioning and facilitation among taxa

(Cardinale, Palmer, & Collins, 2002; Crawford & Rudgers, 2012; Crut-

singer et al., 2006; Hughes, Inouye, Johnson, Underwood, & Vellend,

2008; Tittensor et al., 2014). Similarly, interaction network and

demographic studies suggest that generalist species that associate

with multiple mutualistic partners have higher fitness than specialists

when there is spatial or temporal heterogeneity in partner availabil-

ity/quality and that a few generalist species can be critical for the

broader community’s stability (Afkhami et al., 2014; Bascompte,

2009; Palmer et al., 2010).

Our understanding of the ecological mechanisms and conse-

quences of multispecies interactions greatly exceeds our understand-

ing of the physiological, genetic and molecular mechanisms

underlying how any individual species interacts with multiple part-

ners. There are two major stumbling blocks to making progress on

this goal. First, addressing this question requires studying the molec-

ular response and genetic basis of interactions with multiple part-

ners. The growing molecular and genomic resources for plants and

microbes, combined with the accompanying ecological literature (e.g.,

Larimer, Bever, & Clay, 2010; Larimer, Clay, & Bever, 2014; Ossler

et al., 2015; van der Heijden, Bardgett, & van Straalen, 2008), pro-

vide an opportunity to tackle this first challenge. Indeed, some stud-

ies of tripartite microbial symbioses have begun by identifying

overlap in genes that are induced or suppressed in pairwise

interaction studies (Deguchi et al., 2007; Manthey et al., 2004; Sal-

zer et al., 2000; Tromas et al., 2012). For example, two plant nutri-

tional mutualists—N-fixing bacteria and mycorrhizal fungi—both

induced genes involved in functions like membrane transport, pri-

mary metabolism and cell wall construction in separate experiments

(Manthey et al., 2004) and use a shared “common symbiosis path-

way” for establishment of their interaction with the plant (Markmann

& Parniske, 2009; Oldroyd, 2013). Second, many of the existing

genetic and transcriptomic studies of multispecies mutualisms (in-

cluding our own: Afkhami & Stinchcombe, 2016) have necessarily

taken a “gene at a time” approach. Considering each gene in isola-

tion (e.g., its expression) fails to consider how multispecies interac-

tions will affect the expression and function of multiple genes

simultaneously. A network approach has the potential to add a com-

plementary perspective, in that it can identify suites of genes whose

expression change in concert in response to single or multiple

mutualists.

A network perspective on the transcriptomic response to multi-

species mutualisms is likely to be complementary to a “gene at a time”

approach in several important ways. Identifying suites of genes with

correlated expression will make it more tractable to identify groups of

genes whose collective expression is associated with complex, ecologi-

cally relevant outcomes (see Des Marais, Guerrero, Lasky, & Scarpino,

2017 for an example related to plant drought and cold responses).

These genes can then be studied in their own right—for example, their

molecular population genetic history (Josephs, Wright, Stinchcombe, &

Schoen, 2017), for agricultural purposes, or as tools for further probing

the structure of molecular pathways. Network approaches also pro-

vide greater context of potential gene–gene interactions for those

genes whose expression is differentially affected additively or nonad-

ditively by multiple mutualists. Are these genes at the periphery of

gene expression networks, with their expression responsive to single

or multiple mutualists because they are relatively unconnected to

other genes? Or, alternatively, are these genes highly connected to

many other genes, making them potentially key players in widespread

transcriptomic responses to complex mutualisms?

Here, we investigate the consequences of multispecies mutu-

alisms for the structure and function of genomewide expression net-

works for the first time, using the tractable and ecologically

important interaction between plants, rhizobia and mycorrhizal fungi.

First, we examine a set of genes previously determined to show

additive and nonadditive transcriptomic responses to multiple mutu-

alists, asking: (i) Are genes nonadditively affected by multiple mutual-

ists more highly connected? We then examine how the context of

multispecies mutualisms affects coexpression networks of plant

genes, microbial mutualist gene expression and gene expression

across the plant–microbial symbiosis to develop a more complete

picture of how a multispecies community context affects organisms’

molecular phenotype. Specifically, we ask: (ii) Do multispecies mutu-

alisms substantially change gene coexpression networks of hosts? (iii)

Do sets of host genes that are differentially coexpressed in response

to microbial mutualists explain variation in plant performance? (iv)

How is fungal gene coexpression affected by rhizobia? (v) How is
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the joint coexpression of plant and fungal genes affected by the

presence of rhizobia?

2 | MATERIALS AND METHODS

2.1 | Study system

We used Medicago truncatula (Jemalong A17) and two microbial

symbionts—mycorrhizal fungi (Rhizophagus irregularis DAOM197198)

and rhizobia (Ensifer meliloti Rm1021)—to study the effects of tripar-

tite interactions between a host and its symbionts on genomewide

coexpression networks. Medicago truncatula is a common model sys-

tem for studying symbioses because (i) it has substantial genomic

resources (Branca et al., 2011; Burghardt et al., 2017; Friesen et al.,

2014; Tang et al., 2014; Yoder et al., 2014) and (ii) interacts with

two of the most common microbial mutualists—mycorrhizal fungi

and rhizobia (Mathesius, Journet, & Sumner, 2006). While natural

frequencies of interactions between M. truncatula and each of its

microbial partners in nature are needed, experimental manipulations

such as ours (that simulate the extremes of variable bacterial and

fungal densities) in M. truncatula make an excellent system for

understanding the molecular basis of multiple mutualist effects. Pre-

vious work in this system has documented genes that are differen-

tially expressed in response to each of these mutualists individually

as well as together (Afkhami & Stinchcombe, 2016). That differential

expression study found that while expression of most genes was

affected by one symbiont or the other, the expression of 623 genes

was significantly altered by multiple mutualists. In most cases (561

genes), the multiple mutualists had an additive joint effect on the

expression such that the effects of the two mutualists on expression

are independent and the effects of multiple mutualists can be calcu-

lated by summing effects with each mutualist. However, these mutu-

alists had nonadditive effects on an additional 62 genes, where the

effects of one mutualist on expression are influenced by the pres-

ence of the other, and the effects of multiple mutualists cannot be

calculated by summing effects with each mutualist. The latter group

included unexpected results, like 17 genes whose expression

switched direction in the presence of multiple mutualists compared

to a single partner.

2.2 | Experimental design and data collection

Because experimental methods have been previously described in

Afkhami and Stinchcombe (2016), we give only a brief overview

here. One hundred and twenty M. truncatula JA17 were grown in a

complete randomized block design experiment manipulating rhizobia

and mycorrhizal fungi. Microbial environments were as follows: only

rhizobia (M�R+), only mycorrhizal fungi (M+R�), both (M+R+) or nei-

ther (M�R�). We inoculated sterilized nested magenta boxes con-

taining triple autoclaved sand (Heath, Stock, & Stinchcombe, 2010)

at 1 and 1.5 weeks after germination. R+ plants were inoculated

with ~107 rhizobia cells in sterile ddH2O and R� plants with 1 ml

sterile ddH20 (Simonsen & Stinchcombe, 2014). Similarly, we treated

M+ plants with ~300 spores in sterile ddH20 and M� plants with

the same inoculum after autoclaving (49 at 121°C) to ensure spore

inviability (Antunes, Miller, Carvalho, Klironomos, & Newman, 2008;

Powell et al., 2009). Plants were harvested at 7 weeks, after symbio-

sis establishment but prior to transcriptional changes associated with

plant senescence. We rinsed (in sterile water), flash-froze, homoge-

nized and then extracted RNA from whole root systems of 32 plants

(8 per treatment; Norgen Biotek’s Plant/Fungi Total RNA Purification

Kit), and dried and weighed aboveground tissues of all plants. We

characterized RNA with a Nanodrop 1000 (132.38 � 9.84 ng/ll)

and a 2100 Bioanalyzer (RNA Integrity Numbers = 9.18 � 0.06; max

possible RIN = 10) and constructed cDNA libraries (TruSeq Stranded

mRNA Sample Preparation Kit). One M+R� library was excluded as

it did not pass quality control. Since rhizobial mRNA lacks poly-A

tails, no rhizobia expression data were produced. We sequenced

libraries on the Illumina HiSeq 2000 with 100-bp paired-end reads

(8 samples/lane; Genome Quebec at McGill University). We verified

that inoculations were successful by confirming the presence of nod-

ules for the rhizobial treatment and of transcripts mapping to the

fungal genome for the mycorrhizal treatment (Afkhami & Stinch-

combe, 2016).

2.3 | Data processing

We used TOPHAT (version 2.0.12), allowing for two mismatches per

read, with BOWTIE (version 2.2.3) (Langmead & Salzberg, 2012; Trap-

nell, Pachter, & Salzberg, 2009) to map and align the sequence reads

to the M. truncatula JA17 and R. irregularis DOAM 197198 genomes.

We then determined the number of reads per gene for each sample

using HTSEQ (version 1.8.1; Anders, Pyl, & Huber, 2015), followed by

filtering and removal of lane effects (LIMMA package; Smyth, 2005).

Because samples were randomized across sequencing lanes with

respect to microbial treatment, lane effects are not confounded with

treatments. We included all genes for which read counts were >10

in at least one of the samples within at least one treatment group

(Sha, Phan, & Wang, 2015). Results were robust to different filtering

cut-offs, producing qualitatively similar results (Figure S1). Following

weighted gene coexpression network analysis (WGCNA) best prac-

tices (Langfelder & Horvath, 2017), read counts per gene were trans-

formed to correct for RNA-seq bias towards genes with high

expression levels with the rlog() function in DeSeq2 (Langfelder &

Horvath, 2008; Love, Anders, & Huber, 2014) which produces a

transformation to the log2 scale while normalizing for the number of

reads in each sample. We then quantile normalized with the prepro-

cessCore package (Bolstad, 2013) following guidance of Hicks & Iri-

zarry, 2014 (Figure S2).

2.4 | How connected are genes affected by
multiple mutualists? Centrality of additively vs.
nonadditively affected genes in expression network

We constructed an undirected weighted network with the nodes as

genes and edges as Pearson’s correlation values of expression levels.
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We then calculated the degree centrality, the sum of all the edges

connecting the node to the rest of the network:

CDðiÞ ¼
XN
j

rij

where i is the focal gene, j is every other gene, N is the total number

of genes, and r is the absolute value of the Pearson’s correlation

between gene i and gene j raised to a power of 10 to fit a scale-

free-network topology (Barab�asi, 2013). Biologically, degree central-

ity (centrality hereafter) gives a measure of how correlated each

gene’s expression is to the expression of other genes in the network;

we interpret this as a metric of how connected a gene is to the rest

of the network. Degree centrality has also been shown to be a met-

ric of biological importance; for example, proteins with high-degree

centrality are more essential for survival and have slower evolution-

ary rates than those with low centrality (Hahn & Kern, 2005;

Kosch€utzki & Schreiber, 2008). We calculated and compared the

degree centrality of genes previously identified (Afkhami & Stinch-

combe, 2016) to show additive and nonadditive expression in the

response to multispecies mutualisms. For comparison, we generated

the degree centrality of randomly sampled genes from the network

and calculated the z-value of the degree centrality of additive and

nonadditive genes (n = 1,000). To determine whether nonadditive

and additive genes had significantly different centralities, we ran-

domly sampled 62 additive genes (without replacement) to match

the sample size of nonadditive genes and used a t test to compare

the mean centrality of the additive and nonadditive gene sets. We

repeated this 1,000 times, saving the t-value from each test, and

then examined what proportion of tests yielded a significant differ-

ence in centrality. We interpreted differences in centrality as non-

significant if more than 5% of these t tests with equalized sample

sizes were not significant.

2.5 | Detecting and characterizing differentially
coexpressed genes

To identify how microbes change coexpression, we used differential

coexpression analysis which identifies clusters or “modules” of genes

whose coexpression network changes among treatments (here

microbial environments). Our goal was to identify suites of genes

whose expression correlations differed between treatments which

could provide insights into the functional basis of multispecies mutu-

alisms and the molecular mechanisms that underlie them. With the

transformed, normalized genes (of the plant, mycorrhizal fungi, or

both) as the input, we utilized WGCNA (Langfelder & Horvath,

2008) with the DiffCoEx add-on (Tesson, Breitling, & Jansen, 2010)

to determine the consequences of mutualist and multiple mutualist

effects for coexpression of genes in the shared plant host, in

the mycorrhizal fungi, and across the symbiosis (i.e., plant and fungi

genomes).

The DiffCoEx computational pipeline generates modules using all

samples, based on a distance matrix reflecting biological differences

caused by our experimental treatments. To do this, it first identifies

coexpression relationships among genes by estimating a Spearman’s

rank correlation matrix between all pairs of genes within each treat-

ment (Tesson et al., 2010). To call differentially coexpressed mod-

ules, the algorithm compares how coexpression relationships change

across all four treatments by generating a distance matrix, where

each entry was the difference in rank correlations of expression

across treatments (Tesson et al., 2010). We used the generalized

form of the distance metric outlined below which allows us to

account for the four treatments when determining differentially

coexpressed modules:

D : dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
k

jsgn c½k�ij

� �
� c½k�ij

� �2
�c½0�ij j

2

vuuut
0
BB@

1
CCA

b

with

c½0�ij ¼ 1
n

X
k

sgn c½k�ij

� �
� c½k�ij

� �2
� �

where sgn is the signum function (which extracts the sign of a real

number, i.e., assigns �1 to negative numbers and +1 to positive

numbers), c[k] is the Spearman’s rank correlation matrix for treatment

k, n is the number of treatments, b is the soft-thresholding power

which transforms the correlation values to place emphasis on large

over small changes, and D is the matrix of distance metrics (Tesson

et al., 2010). These analyses were conducted with a conservative

soft-thresholding power of 4 (Dobson, Chaston, & Douglas, 2016;

Hariharan et al., 2014), and clustering of modules using the

WGCNA’s dynamicTreeCut() function employed a recommended

minimum cluster size of 100 (i.e., coexpression modules were

required to contain at least 100 genes; Tesson et al., 2010) and a

conservative cut height parameter of 0.98 (Dobson et al., 2016; Har-

iharan et al., 2014; Tesson et al., 2010). WGCNA merged putative

modules whose expression profiles were highly similar, as estimated

by highly correlated eigengenes (r = .8; Dobson et al., 2016; Hariha-

ran et al., 2014; Tesson et al., 2010). We used established permuta-

tion testing methods (Dobson et al., 2016; Hariharan et al., 2014;

Tesson et al., 2010) with a 1,000 randomized data sets to verify that

modules showed significant coexpression differences between treat-

ments and eliminated modules that lacked clear support for differen-

tial coexpression.

Our use of the DiffCoEx pipeline has several subtle, but impor-

tant, analysis implications. First, while it estimates Spearman rank

correlations within treatments, no hypothesis testing is performed

on these individual correlations. Second, the primary input to

WGCNA for estimating modules is a distance matrix reflecting all of

the data (in this case 31 samples), rather than individual matrices

within treatments; the distance matrix across treatments directly cor-

responds to our biological hypothesis that microbial environments

affect coexpression structure. Third, the use of permutation testing

is a means to reduce the effects of sampling error in estimating the

original rank correlations from leading to spurious coexpression dif-

ferences: if small sample sizes and sampling error lead to differences
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in rank correlations (and hence larger distance metric scores) simply

by chance, that should also occur with permuted data.

2.6 | Module relationships with plant performance
and functional enrichment

To provide preliminary insights into whether the modules identified

as differentially coexpressed among microbial treatment could under-

lie plant performance, we regressed plant performance (aboveground

biomass) to the eigengene of each plant module (i.e., the primary

axis of variation in expression of all genes in the module) across the

31 samples. p-Values were adjusted for multiple testing

(FDR < 0.05).

We also conducted a Gene Ontology enrichment analysis for

modules that were differentially coexpressed with the algorithm

from the topGO R-package (Alexa & Rahnenfuhrer, 2010). Annota-

tion information was used for assigning functions in both the plant

(Mt4.0v2; www.medicagogenome.org) and fungi (Tisserant et al.,

2013). p-Values for enrichment of complete GO terms were gener-

ated using the Fisher exact test and adjusted to correct for multi-

ple comparisons in topGo. The background for the GO analysis

was the set of genes input into the computational pipeline (e.g.,

the 25,967 expressed plant genes were used as the background

for the plant analysis). We report GO functions here by first identi-

fying a set of the 10 most highly enriched functions for each mod-

ule (i.e., the top 10 smallest p-values for functions) and then

selecting the most significant child term within that set of 10.

While there are many possible criteria for narrowing functional dis-

cussion, we used this approach within the text of this article to

reduce bias while identifying important and interpretable functions.

The full list of functional enrichment is included in the supplemen-

tary materials.

3 | RESULTS

3.1 | Descriptive sequencing and read-mapping
statistics

A total of 753,894,804 raw reads were generated (~24.3 � 0.6 mil-

lion reads per sample) with ~83.63 � 1.53% mapping to the M. trun-

catula genome. In the M+ treatment, ~11.40 � 1.71% of reads

mapped to the mycorrhizal (R. irregularis) genome while very few

reads mapped to the R. irregularis genome in the M� treatment

(0.17% � 0.01), indicating that M� plants did not associate with

mycorrhizal fungi (Afkhami & Stinchcombe, 2016). Sequence data

are available in the NCBI Sequence Read Archive (SRP07824).

3.2 | Are genes nonadditively affected by multiple
mutualists more highly connected?

The connectivity of genes with an additive effect (z = 3.1, p = .001)

and nonadditive effects (z = 5.8, p < .00001) by multiple mutualists

is higher than random expectation (Figure 1, Table S1). Interestingly,

we find that genes with a nonadditive effect of multiple mutualists

on expression had a nearly twofold higher mean centrality than

genes that show an additive effect (x̅additive = 88, x̅nonadd = 171,

p = .002). These results indicate that the genes with nonadditive

effects are highly connected and possibly exert on average higher

influence over the molecular phenotype of the host organism than

other genes in the network.

3.3 | Do multispecies mutualisms substantially
change gene coexpression networks of hosts?

Of the 25,967 expressed plant genes that were input into our differ-

ential coexpression network analysis 17,271 genes were assigned to

one of 18 differentially coexpressed modules. These modules consist

of groups of coexpressed genes that differ in their correlation struc-

tures across the four microbial environments (Figures 2 and S3) and

included 67% of expressed plant genes, indicating that variation in

microbial environment leads to substantial variation in the coexpres-

sion patterns (Tables 1 and S2 for gene composition of each

module).

Permutation analysis identified which microbial environments

led to differential coexpression patterns for each of the 18 mod-

ules and allowed categorization of most modules based on how

mutualists and multiple mutualists impacted coexpression relation-

ships (Tables 1 and S3). First, we found that in five of 18 mod-

ules, coexpression of genes in the presence of both mutualists

(M+R+) was significantly different from all other treatments

(“Multiple Mutualist Effects”; Table 1; Figure 2), suggesting that

multispecies mutualisms can cause substantial rewiring of the

host plant’s coexpression network. These modules were enriched

for many important functions: glycolytic process (p = .00033;

black), terpenoid metabolic process (p = .00018; skyblue3), oxida-

tion–reduction process (p = .043; mediumpurple3), chromatin

organization (p = .0023; sienna3) and photosynthesis (p = 4.8e-11;

paleturquoise) (Table 1). A full list of associated functions are

available in the supplementary materials (see Table S4). Interest-

ingly, the module associated with glycolytic processes (black) was

also highly enriched for the nonadditive genes reported in the

centrality analysis above, with 40 of the 62 identified nonaddi-

tive genes in this module (p = .00001). Additionally, this module

contained 5 out of 8 genes annotated for ammonium transport

(p = .00124).

Five of the 18 modules had unique coexpression relationships

in the presence of just mycorrhizal fungi (M+R�) compared to all

other treatments (“Third-Party Effects”; Table 1; Figure 2), suggest-

ing that the presence of mycorrhizal fungi alone alters coexpres-

sion pattern, but presence of rhizobia acts as a restorative force.

These modules were also highly enriched for important functions

(Tables 1 and S4), including response to oxidative stress (p = 5.3e-

07; darkorange), anion transport (p = .0081; purple), RNA process-

ing (p = .0042; brown), carbon fixation (p = .00059; grey60) and

pyridine-containing compound biosynthetic process (p = .0074;

darkgreen).
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We also identified one module with differential coexpression in

response to any microbial environment with a mutualist (“Mutualist

Effects”; Table 1). For this module, which is enriched for DNA pack-

ing (p = 1.6e-18; module midnightblue), the mutualist treatments

(M+R+, M+R� and M�R+) have similar coexpression structure which

is distinct from a nonmicrobial environment (M�R�). Therefore, for

this module, participation in mutualism altered the coexpression net-

work regardless of the identity or diversity of mutualists. In addition,

two modules had distinct coexpression relationships driven by a sin-

gle microbial mutualist regardless of the presence of the other

microbe (“Single Mutualist Effect”; Table 1; Figure 2). In the magenta

module (enriched for phosphorylation; p = 3.4e-19; Table 1), differ-

ential coexpression patterns depended on mycorrhizal fungi such

that plants in mycorrhizal treatments (M+R+ and M+R�) had differ-

ent coexpression relationships from those in nonmycorrhizal treat-

ments (M�R+ and the M�R�). While the mycorrhizal fungi

environment appears to be important for driving coexpression differ-

ences in this module, the rhizobia environment appeared to be

important for driving coexpression differences of the darkred mod-

ule. The latter, which was enriched for oxygen transport (p = 2.0e-

12; Table 1), had different coexpression of genes in the presence of

rhizobia (M�R+ and M+R+) vs. in its absence (M�R�, M+R�).

3.4 | Do sets of host genes that are differentially
coexpressed in response to microbial mutualists
explain variation in plant performance?

We identified five modules whose coexpression network struc-

ture was affected by microbial mutualists that were also signifi-

cantly associated with host plant performance (Figure 3). For

each of these modules, the eigengene (the primary axis of varia-

tion in coexpression) was significantly correlated with plant

aboveground biomass after FDR correction (|r| ranging from .50

to .54). Three of the five differentially coexpressed modules that

explained performance in the host plant had coexpression that

was affected by interactions among the microbial mutualists (i.e.,

in the multiple mutualist effects or third-party effects categories;

Table 1), again suggesting that multiple mutualist-driven changes

in plant performance could be caused by substantial rewiring of

the host plant’s coexpression network. Another module (darkred,

enriched for gas transport) that was significantly associated with

plant performance had changes in coexpression that were driven

predominantly by rhizobia, but also trended towards being

affected by multiple mutualists (p-value between M+R+ and

M�R+ was marginal: p = .08; Table S3).
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F IGURE 1 Connectivity of genes affected by multiple mutualisms additively and nonadditively. The average centrality within the gene
network of randomly selected Medicago truncatula genes was calculated to generate the null expectation (n = 10,000). Two null expectations
were generated to account for the difference in sample size between additive (>500 genes) and nonadditive (62 genes) gene sets. The actual
centrality of additive and nonadditive genes is shown as blue and red dashed lines, respectively. The connectivity of genes with an additive
effect (z = 3.1, p = .001) and nonadditive effects (z = 5.8, p < .00001) of multiple mutualists is greater than expected by chance. Further,
nonadditive genes are significantly more connected than additive genes (p = .002)
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3.5 | How is fungal gene coexpression affected by
rhizobia?

We identified 22 fungal modules, containing 48% of the 13,247 fun-

gal genes (Table S2), that have distinct coexpression network

structure in the treatment with both partner mutualists compared to

the treatment with only mycorrhizal fungi (Table S3), suggesting a

very strong effect of third-party mutualists on mycorrhizal coexpres-

sion (i.e., lots of changes in network connectivity). These modules

were enriched for many important mycorrhizal metabolic and cellular

M+R+ M+R– M–R+ M–R–
(a) (b) (c) (c)

(a)

M+R+ M+R– M–R+ M–R–
(a) (b) (a) (a)

(b)

M+R+ M+R– M–R+ M–R–
(a) (b) (a) (b)

(c)

F IGURE 2 Coexpression changes in plants among microbial environments. (a) Example heat maps of plant coexpression in a “Multiple
Mutalist Effects” module in which coexpression of genes in the presence of both mutualists (M+R+) was significantly different from all other
treatments. (b) Example heat maps of plant coexpression in a “Third-Party Effects” module in which coexpression with mycorrhizal fungi alone
(M+R�) is unique but the presence of rhizobia (a third-party mutualist) returned coexpression structure to that observed without fungi (i.e.,
same as in treatments M�R+ or M�R�). (c) Example heat maps of “Single Mutualist Effects” module in which coexpression is dependent on
the presence of rhizobia (i.e., M+R+ and M�R+ have different coexpression from M+R� and M�R�). The heat maps show the coexpression of
plant genes in each of our four microbial treatments in an N 9 N grid where N is the number of genes in the module and each pixel
represents the Spearman rank correlation between the expression levels of any two genes. Red and blue indicate positive and negative
correlations, respectively. M+R+ indicates coexpression of plant genes grown with mycorrhizal fungi and rhizobia, M+R� indicates plants
grown with only mycorrhizal fungi, M�R+ indicates plants grown with only rhizobia, and M�R� indicates plants grown with no microbes.
Significance differences in coexpression structure among microbial treatment from permutation testing of these DiffCoEx-identified modules
indicated by different lowercase letters
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processes (Table S4), including phosphorylation (Myco_darkslateblue,

p = .0065), carboxylic acid transport (Myco_darkturquoise,

p = .0046), lipid glycosylation (Myco_pink, p = .00086) and N-acetyl-

glucosamine metabolic process (Myco_saddlebrown, p = .02). Full

enrichment lists for all 22 fungal modules that were significantly dif-

ferentially coexpressed in response to rhizobia are available in

Table S4.

3.6 | How is the joint coexpression of plant and
fungal genes affected by the presence of rhizobia?

To examine how rhizobia could alter coordination in gene expression

between host plants and their mycorrhizal fungi symbionts, we iden-

tified “across-symbiosis” gene modules (i.e., modules containing both

mycorrhizal fungi and plant genes expressed together; Table S2) that

are differentially coexpressed based on the presence or absence of

rhizobia. We detected 18 modules with significant differences in

coexpression structure in response to rhizobia; these modules were

on average composed of 63 � 3% plant genes (and 37 � 3% fungal

genes) and were enriched for important functions (Tables S3–S4).

For example, module Sym_salmon1 was enriched for lipid transport

in the plant (p = .0030) and for potassium ion transport in the myc-

orrhizal fungi (p = .0067). Additionally, module Sym_thistle3 was

enriched for regulation of metabolic process in the plant (p = .0124)

and protein phosphorylation in the mycorrhizal fungi (p = .0015). Full

enrichment lists for both fungal and plant gene sets for each of the

18 modules are available in Table S4.

4 | DISCUSSION

Complex community interactions between multiple mutualists are

important for both the ecology and evolution of participating species

(Afkhami et al., 2014; Harcombe, Betts, Shapiro, & Marx, 2016; Pal-

mer et al., 2010). Many of these interactions are microscopic, take

place below ground and involve resource exchange that can be diffi-

cult if not impossible to observe (Burghardt et al., 2017). A transcrip-

tomic approach offers the prospect of identifying hundreds to

thousands of molecular phenotypes associated with these interac-

tions. Our gene network analysis of coexpression patterns in

response to multiple mutualists revealed three major findings. First,

individual genes whose expression is affected by multiple mutualists

TABLE 1 Effect of microbial environment on coexpression for host plant genes

Module IDA CategorizationB

Permutation test resultsC p-Value for
plant
performanceD Module’s functional enrichmentEM+R+ M+R� M�R+ M�R�

Paleturquoise Multiple Mutualist Effects a b c c .01 Photosynthesis

Sienna3 Multiple Mutualist Effects a b c c .01 Chromatin organization

Skyblue3 Multiple Mutualist Effects a b b b .12 Terpenoid metabolic process

Mediumpurple3 Multiple Mutualist Effects a b c c .14 Oxidation–reduction process

Black Multiple Mutualist Effects a b c c .37 Glycolytic process

Brown Third-Party Effects a b a a .01 RNA processing

Grey60 Third-Party Effects a b a a .11 Carbon fixation

Darkgreen Third-Party Effects a b a a .22 Pyridine-containing compound

biosynthetic process

Purple Third-Party Effects a b a a .71 Anion transport

Darkorange Third-Party Effects a b a a .74 Response to oxidative stress

Midnightblue Mutualist Effects a a a b .32 DNA packaging

Darkred Single Mutualist Effects a b c b .01 Oxygen transport

Magenta Single Mutualist Effects a a b c .51 Phosphorylation

Red Other a b ad cd .01 Regulation of primary metabolic process

Cyan Other a b b ab .11 Defence response

Green Other a ac bc a .32 Regulation of transcription, DNA-templated

Darkolivegreen Other a b c a .39 Putrescine metabolic process

Blue Other a bc ac ac .57 Translation

AModules identified in the differential coexpression network analyses are given individual and unique colour names. BThe modules were placed into five

categories based on their differential expression among microbial environments determined via Cpermutation testing in DiffCoEx computational pipeline.

Significant differences (p ≤ .05) among microbial treatments indicated by distinct lowercase letters. DSignificant associations between the primary axis of

variation in the coexpression of modules and plant performance (shoot mass) are indicated as bolded p-values. Analyses were FDR-corrected. EEnrich-

ment analyses were used to identify key functions associated with each differentially coexpressed module. A full list of associated function are available

in the supplementary materials, but we have listed the most specific function (i.e., child term) from the top ten most significant functions associated with

each module.
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in nonadditive ways appear to be more connected and potentially

more important for coexpression networks than a random set of

genes. Second, interacting with multiple mutualists leads to changes

in gene coexpression network structure, including changes to coex-

pression of modules that are associated with plant performance.

Finally, one mutualist, rhizobia, affected gene coexpression of an

alternate mutualist (fungi) and plants and fungi simultaneously. We

consider these results in turn below.

4.1 | Are you connected? Network analysis of
nonadditively expressed genes

There are competing hypotheses for the network position of genes

whose expression is nonadditively affected by multiple mutualists.

On the one hand, these genes may be central to nonadditive tran-

scriptomic and performance responses to multiple mutualists and are

thus central in gene networks. Nonadditive changes in expression in

these genes may thus affect many other gene networks and path-

ways, potentially underlying synergistic effects on performance and

fitness of interacting with multiple mutualists. On the other hand, it

may be that these genes, which respond to biological cues (the pres-

ence and absence of two other species) that are variable in space

and time, are peripheral in gene networks. Under this interpretation,

genes whose expression affects growth, physiology, nutrient acquisi-

tion and allocation, and performance in response to symbiosis may

be less connected because of their potential widespread pleiotropic

effects.

Our results clearly indicate that nonadditive genes appear to be

at the centre of gene coexpression networks and are more con-

nected than both a random sample and genes whose expression is

affected by multiple mutualists in additive fashion. If we use connec-

tivity as a proxy for biological importance—how tightly associated

with transcription of many other genes throughout the genome and

their potential for relaying information in networks—these results

suggest that a few dozen genes (N = 62) may be central players in

plastic responses to multiple mutualists.

Many studies of gene network expression in ecology and evolu-

tion have focused on evolutionary components of gene networks.

For example, there is a large literature on how network properties

affect evolutionary divergence of genes between species (Carlson

et al., 2006; Jordan, Mari~no-Ram�ırez, Wolf, & Koonin, 2004; Jovelin

& Phillips, 2009) and polymorphism within species (Josephs et al.,

2017; M€ahler et al., 2017). A common underlying hypothesis to

many of these studies is that genes with more connectivity or
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F IGURE 3 Relationship between plant performance and differential coexpressed genes. Five differentially coexpressed modules of genes
explain variation in aboveground biomass. These modules were annotated for oxygen transport (a), regulation of metabolic processes (b),
photosynthesis (c), chromatin organization (d) and RNA processing (e). X-axis is the eigengene, or the primary axis of variation in expression
across the gene set (scaled with mean = 0, SD = 1), and the y-axis is the plant aboveground biomass. Each point is an individual plant, grey
regions indicate 95% CIs, and listed p-values are FDR-corrected
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involved in more biological processes are likely to show higher pleio-

tropy (He & Zhang, 2006). However, we have much less evidence

on plastic responses of gene networks to ecological cues such as the

presence or absence of other species.

Recent work by Des Marais et al. (2017) in Arabidopsis thaliana

provides an interesting point of comparison. They found that genes

showing Genotype 9 Environment interactions for expression

(eG 9 E) in response to drought were significantly more peripheral

in gene expression networks, while those showing eG 9 E in

response to cold were significantly more central in networks. They

suggested that because nearly all genotypes of Arabidopsis will expe-

rience some sort of drought throughout some part of their life cycle

it could lead to many potential, fine-tuned ways to adjust pheno-

types and expression in response to drought. In contrast, because

only some genotypes will experience extreme cold, it may be that

there are fewer adaptive phenotypes, requiring coordinated changes

in expression across many genes. In our experiment, nonadditively

expressed genes are similar to the cold-responsive eG 9 E genes

studied by Des Marais (i.e., we observed genes showing

Fungi 9 Rhizobia interactions for expression; both sets of genes

are at the centre of networks). If their general interpretation is

correct, it suggests in our system there might only be a few ways

to coordinate multispecies mutualisms and that nonadditively

expressed genes are central to this multispecies response. Pairwise

or single-mutualism studies may fail to identify centrally important

genes for coexpression.

4.2 | It takes a network: Understanding
multispecies mutualisms impacts on host
coexpression

Moving beyond a “gene at a time” approach provided new insights

into hosts’ molecular response to multispecies mutualists. First, we

noted that the mutualisms with rhizobia and mycorrhizal fungi

resulted in substantial changes in the coexpression network topology

of host plants, such that >67% of plant genes were in modules that

had significant changes in coexpression in response to microbial

mutualisms. In particular, the interaction between these partner

mutualists had important consequences for coexpression. For

instance, ~30% of the identified modules had distinct coexpression

structure in the presence of multiple mutualists, suggesting simulta-

neous interactions with multiple partners can cause significant rewir-

ing of host plants expression networks. These modules were

enriched for a variety of important and intriguing functions. For

example, the multiple mutualist-affected “skyblue3” module was

strongly associated with terpenoid metabolic processes, suggesting

that interactions with multiple mutualists may alter production of

chemicals important for plant defence against herbivores, and com-

munication between plants and other types of mutualists (Gershen-

zon & Dudareva, 2007). Further, an additional ~30% of identified

modules had unique coexpression structure that occurred when

grown with only mycorrhizal fungi. Interestingly, in these third-party

effects modules, rhizobial presence returned coexpression structure

to that observed without mycorrhizal fungi (i.e., same as in treat-

ments M�R+ or M�R�). Therefore, rhizobia may have overwhelmed

the coexpression changes generated by the fungi, restoring network

structure to that found in other microbial environments. While we

previously identified a potentially important, but also small, set of

genes that were differentially expressed in response to multiple

mutualists (Afkhami & Stinchcombe, 2016), our new differential

coexpression analysis revealed substantial rewiring of gene expres-

sion interactions across the host plant genome.

Second, we found that most of the groups of coexpressed

genes that significantly explained plant performance showed either

multiple mutualist effects or third-party effects on their coexpres-

sion. Our finding indicates that interactions among multiple micro-

bial mutualists that drive significant changes in coexpression may

be important for plant performance and underlie some of the syn-

ergistic fitness effects observed in tripartite mutualisms. In fact,

many of the performance-associated modules with unique coex-

pression in the presence of multiple mutualists were enriched for

functions such as photosynthesis, which is likely important for plant

fitness and carbon-based rewards provided to microbes (Afkhami &

Stinchcombe, 2016; Larimer et al., 2014; Ossler et al., 2015).

Another performance-associated module was enriched for oxygen

transport (containing 11 out of the 16 M. truncatula genes anno-

tated for oxygen transport). Oxygen transport genes, such as leghe-

moglobin genes, are known to be necessary for the maintenance of

nitrogen-fixing nodules (Ott et al., 2005) and can also be induced

by colonization of arbuscular mycorrhizal fungi (Fr€uhling, Roussel,

Gianinazzi-Pearson, P€uhler, & Perlick, 1997; Vieweg et al., 2004).

This module trends towards coexpression being affected interac-

tively by multiple mutualists (Table S3), indicating future study into

interactive effects of these mutualists on oxygen transport may be

informative. While significant associations between performance

and coexpression suggest that changes in plant coexpression led to

changes in plant performance, these analyses are correlative and

thus cannot fully establish causality. Therefore, we advocate for

future work (i) manipulating growth environment and plant geno-

type to determine whether modules’ relationships with performance

shift with these sources of variation and (ii) directly manipulating

modules (e.g., knocking out central “hub” genes) to test for changes

in performance phenotypes.

Third, we found that a surprising 40 of the 62 genes identified

as having expression nonadditively affected by multiple mutualists

[in a gene-by-gene differential expression analysis in Afkhami and

Stinchcombe (2016)] were part of a single module (black, enriched

for glycolytic processes). This module had a unique coexpression

network structure in the presence of multiple mutualists and was

significantly enriched for glycolytic processes and ammonium trans-

port aligning with known biology of nutrient transport between host

plant, mycorrhizal fungi and rhizobia (Govindarajulu et al., 2005;

Udvardi & Poole, 2013). Taken with results from the degree central-

ity analysis, we hypothesize that a small candidate set of nonadditive

genes may play important roles in coordinating responses to multi-

species microbial mutualisms through the trade of resources.
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4.3 | Party crashers and Cross-talk: Third-party
mutualists and microbial coexpression across the
symbiosis boundary

A key aspect to unravelling how organisms regulate interactions in

complex communities is to investigate multispecies mutualisms from

the perspective of each partner species and the across-symbiosis

interaction. Our analyses provided some important preliminary

insights for this goal and highlight important future directions. One

surprising result from our examination of coexpression across the

mycorrhizal genome was that rhizobia caused significant changes in

coexpression structure with approximately half of expressed mycor-

rhizal genes in one of 22 differentially coexpressed fungal modules.

These results indicate that a third-party mutualist can cause major

rewiring of another microbial partner’s molecular network, potentially

inducing or suppressing molecular and biochemical pathways that

underlie important functions, including many fundamental cellular

processes of the mycorrhizal fungi.

We noted that these molecular changes in fungi may result from

one or, more likely, a variety of components of the interaction with rhi-

zobia, including both direct and indirect effects. For example, by

increasing availability of N through fixation, rhizobia could enhance host

plant performance (Afkhami et al., 2014; Larimer et al., 2014; Ossler

et al., 2015) indirectly leading to inducement or suppression of molecu-

lar processes in mycorrhizal fungi such as colonization or growth. Rhizo-

bia and mycorrhizal fungi could also have direct positive or negative

effects on each other’s fitness, and associated changes in molecular pro-

cesses, as they both occur in plant roots and a number of studies have

shown evidence for colocalization (with mycorrhizal colonization of up

to ~75% of the nodules; Scheublin & van der Heijden, 2006). Close

proximity of symbionts to one another could facilitate easier transfer of

resources or direct inhibition among symbionts. Scheublin and van der

Heijden (2006) found that fungal-colonized nodules typically did not fix

atmospheric nitrogen, which could mean that fungal colonization of

nodules leads to a negative direct interaction among microbial partner

species. While differentiating between direct and indirect transcrip-

tional effects of mycorrhizal fungi and rhizobia on each other is chal-

lenging and beyond the scope of this paper, future work using split-root

design experiments (Batstone, Dutton, Wang, Yang, & Frederickson,

2017) to spatially separate microbes could eliminate direct interactions

and allow decoupling of direct and indirect effects.

Finally, many species depend on nutritional resources acquired

through resource exchange mutualisms (Boucher, James, & Keeler,

1982; Hosokawa, Koga, Kikuchi, Meng, & Fukatsu, 2010; Ji & Bever,

2016). Recent work, for instance, has increasingly documented

extensive metabolic cooperation for essential amino acid synthesis in

tightly coevolved insect–microbe symbioses (Ankrah, Luan, & Dou-

glas, 2017; Wilson & Duncan, 2015) and within microbiomes, allow-

ing microbial communities to utilize substrates that would otherwise

be inaccessible (Seth & Taga, 2014). Beyond production of resources,

another important aspect of resource exchange is transporting of

rewards between partners. Our results from an across-symbiosis

analysis show that transport is enriched for plants and mycorrhizal

fungi in modules that are differentially coexpressed when rhizobia is

present (the sym_chocolate3 and sym_salmon1 modules), suggesting

that this third-party mutualist may shift trade dynamics between the

other two species. By identifying groups of genes in plants that are

coexpressed with genes in the mycorrhizal genome, our coexpression

network approach provides initial insights into across-symbiosis

molecular interactions and candidate modules for future exploration.

5 | CONCLUSION AND FUTURE
DIRECTIONS

Our study demonstrated that multispecies mutualisms have substan-

tial effects on the complex molecular network of gene expression

interactions in host plants, microbes and across symbiotic bound-

aries. Although challenging to incorporate both ecological complexity

(i.e., moving beyond pairwise interaction studies) and molecular com-

plexity (e.g., moving beyond a “gene at a time” approach), we

detected important consequences for the molecular phenotypes of

host organisms and key candidate genes for breeding and plastic

responses to ecological variation. In our opinion, three general

classes or types of experiments are likely to be profitable going for-

ward. First, studies that expand the range of genotypes and environ-

mental conditions (e.g., C-, N-, P-limited or supplemented conditions)

will be necessary to fully integrate ecological and genetic complexity

in studies of multispecies mutualisms. Second, studies manipulating

gene function and/or utilizing gene validation approaches are impor-

tant next steps for improving our understanding of causality as well

as which molecular changes are most important for performance

within identified candidate modules. For example, future work

directly manipulating hub genes within the performance-associated

modules and measuring host transcriptional and performance

responses could provide valuable mechanistic and causal insight.

Third, complementary studies delving more deeply into the effect of

microbial mutualists on each other, such as using split-root design

experiments to distinguish between direct and indirect transcrip-

tional effects of partner species on one another, are also needed.

Collectively, studies like these will allow us to better understand the

mechanistic basis as well as ecological and evolutionary conse-

quences of multispecies mutualisms.
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