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Many central questions in ecology and evolutionary
biology require characterizing phenotypes that change
with time and environmental conditions. Such traits are
inherently functions, and new ‘function-valued’ meth-
ods use the order, spacing, and functional nature of the
data typically ignored by traditional univariate and mul-
tivariate analyses. These rapidly developing methods
account for the continuous change in traits of interest
in response to other variables, and are superior to tradi-
tional summary-based analyses for growth trajectories,
morphological shapes, and environmentally sensitive
phenotypes. Here, we explain how function-valued
methods make flexible use of data and lead to new
biological insights. These approaches frequently offer
enhanced statistical power, a natural basis of interpre-
tation, and are applicable to many existing data sets. We
also illustrate applications of function-valued methods
to address ecological, evolutionary, and behavioral hy-
potheses, and highlight future directions.

Environmentally responsive traits
Most traits studied by ecologists and evolutionary biolo-
gists change in response to environmental conditions,
population density, or age. For example, the vital rates
at the heart of population dynamics and life-history evolu-
tion (age-specific survivorship and reproduction) show by
their very names that fitness components change with age.
Respiration, photosynthesis, and other fundamental
ecophysiological processes respond to C02 concentrations

and temperature. Phenotypically plastic traits, reaction
norms, developmental trajectories, and gene expression all
change with environmental conditions and age. Under-
standing genetic variation in these traits and how they

Review

Glossary

b(x): selection gradient function. A mathematical function describing the

direction and magnitude of directional selection on a trait as a function of the

index variable.

Basis function: a collection or group of linearly independent functions, f1,

f2,. . .fn, called basis functions because they are basic building blocks: they

can be combined to form new functions by multiplying by scalars and summing.

For instance, 2f1 + 5f4 is a new function obtained from f1 and f4. The linear

independence of the functions means that, for example, the function 2f1 + 5f4
cannot be written via any other combination of scalars and basis functions.

Common basis functions for fitting function-valued traits are Legendre poly-

nomials [11,12] and B-splines [44].

Constant area trade-off: a trade-off inherent to many models of environmental

tolerance and thermal performance, in which the area under the curve describ-

ing how a phenotype changes with an environmental gradient is equal for all

genotypes or individuals. Because of the constant area assumption, specialist–

generalist trade-offs are easily modeled [67].

Function-valued trait: any trait that varies as a function of another continuous

predictor variable. Common examples include phenotypic plasticity, reaction

norms, gene expression profiles, and physiological response curves.

G: the genetic covariance matrix. A matrix with genetic variances for traits on the

diagonal, and genetic covariances between traits on the off-diagonals.

G: the genetic covariance function. A mathematical function describing how

genetic variances for a trait changes in response to an index variable, and

genetic covariances between traits at any value of the index variable.

Index variables: continuous variables that predict changes in function-valued

traits.

Multivariate traits: multiple, potentially correlated traits. Measured traits can

either be distinct phenotypes in the same environment (e.g., body mass and

length), or the same trait expressed in alternate ecological environments (e.g.,

body mass in two habitats), or the same trait expressed over time (e.g., body

mass at multiple ages).

Performance curves: curves describing how some aspect of phenotype (e.g.,

locomotion, growth, etc.) varies as a function of an environmental gradient.

Common examples are thermal reaction norms.

Random regression: a form of regression where the intercepts, slopes, and

coefficients are assumed to be a random sample of a population about which

one wishes to generalize. In the function-valued trait context, this often means

that each sire, inbred line, dam, or random effect would have its own coeffi-

cients, expressed as deviations from the population mean coefficients.

Template function: a mathematical or statistical function that has the appropri-

ate shape to model performance curve, with biological interpretability of the

parameters. Variation in performance curves is then modeled as variation

around the common template shape, and the relative contribution of changes

of biological interest is decomposed [67].

Univariate trait: a single phenotypic trait.
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evolve remains challenging because they are essentially
functions: the traits change continuously in response to
other variables. Here, we review recent advances that offer
powerful and flexible analysis methods that enhance in-
terpretation and understanding of the genetics and evolu-
tion of these ‘function-valued’ traits (see Glossary).

A function-valued trait is any trait that changes in
response to another variable; these continuous predictor
variables are often called ‘index variables’. To appreciate
the difference in perspective, most univariate or multivar-
iate analyses would consider either an individual trait (size
at a given age) or multiple correlated traits (size at multi-
ple ages). By contrast, the function-valued perspective
focuses on the relationship between size and age; that
is, the continuous function describing how size changes
with age.

Why should the ecology, evolution, and genetics of
functions, when even single traits can pose difficult chal-
lenges? First, many recurring debates in evolutionary
ecology concern characterizing the amount of genetic vari-
ation in different types of trait (e.g., life history vs other
traits [1–3]) and the relative strength of evolutionary
constraints [4–8]. Analyzing functions gives enhanced ca-
pacity for quantifying genetic variation and detecting ge-
netic constraints. Second, the simplifications imposed by
univariate and multivariate analysis distort and obscure
the nature of variation and its consequences. Much as a
correlation between two traits can reveal a constraint not
apparent from each trait in isolation, function-valued
analyses can uncover constraints not apparent from uni-
variate or multivariate analysis. Third, function-valued
methods offer enhanced statistical power. Finally, adopt-
ing the perspective that traits are functions allows char-
acterization of the full range of environmentally responsive
phenotypes.

To illustrate, consider Figure 1, which shows univariate,
multivariate, and function-valued approaches to analyzing
genetic variation in size of salamanders [9]. In amphibians,
size at metamorphosis often influences fitness components
(survival and mating). In the univariate case, the genetic
variance in size at a given age (Figure 1a) gives no infor-
mation about its covariance with size at other ages. In a
multivariate analysis, genetic covariances of size at multi-
ple ages are estimated (G, Figure 1b), but this does not take
advantage of the fact that correlations between similar
ages will be larger than those between widely separated
ages. By contrast, the function-valued analysis (Figure 1c),
views size measurements as observations of underlying
continuous growth curves (Figure 1c, left panel), and ex-
plicitly takes advantage of the fact that measurements at
similar ages are more closely related than are measure-
ments at widely separated ages. By taking advantage of
the temporal ordering and continuity of growth, one can
estimate a continuous genetic covariance function, G, that
portrays genetic variation in size, and covariances in size
between every pair of ages, across the entire growth period
(Figure 1c, right panel). The function-valued perspective
offers enhanced statistical power, greater ability to detect
genetic constraints, and improved understanding of phe-
notypic and genetic variation in environmentally sensitive
traits.

Statistical efficiency, flexibility, and enhanced power
Treating traits as functions (and measurements as informa-
tion about a single underlying biological curve) affords many
practical and statistical advantages. Consider a comparison
of two growth trajectories (Figure 2). Different numbers of
measurements exist for each individual at different ages.
Function-valued approaches use these data to estimate and
compare curves, despite the sampling differences (a key
advantage in ecological or evolutionary studies where data
may be taken at different time points, or different degrees of
missing data are likely). By contrast, multivariate methods
require measurements at comparable ages, necessitating
insults to the data, such as binning or eliminating measure-
ments, or ad-hoc imputations to common ages.

Curve fitting also provides a natural way to smooth
noisy data and extract underlying structure or patterns
in which the number of phenotypic measurements per
individual is large. Data of this form are especially common
for environmental monitoring from data loggers and tran-
scriptomic analyses of gene expression.

Function-valued statistical methods can be more pow-
erful and robust than with multivariate methods. Griswold
et al. [10] showed that even when individuals are measured
at identical index values, multivariate analyses have less
power than even basic function-valued methods. As the
number of measurements per individual increases, multi-
variate methods lose power, whereas the power of function-
valued methods remains stable or even improves. The
reason is function-valued methods use information about
the continuity of the underlying function that is ignored by
multivariate methods [10].

Griswold et al.’s findings [10] have two important impli-
cations. First, function-valued approaches could yield more
insight and power from currently used experimental
designs, with existing data. Second, function-valued meth-
ods have statistical advantages even when the curves
estimated are purely phenotypic, from unrelated individu-
als: there is no need for a breeding design or pedigreed
population to obtain the statistical advantages of function-
valued analyses. The power advantages are apparent even
when there is no hierarchical quantitative genetic design,
or need to predict evolutionary responses to selection and,
as such, the function-valued approach is also well suited to
areas outside of evolutionary quantitative genetics. Func-
tion-valued analyses potentially offer greater power and
insight into areas of ecology, genomics, and animal behav-
ior, where purely phenotypic data are typical.

Selection response and genetic constraints
A crucial goal for evolutionary biologists and breeders is to
predict how function-valued traits evolve. For predicting
evolutionary responses, the ability of function-valued
methods to use information about the order and spacing
of measurements leads to substantially improved statisti-
cal and predictive power [11,12].

The function-valued framework for projecting evolution
is based on the standard model for quantitative traits [13]:
the phenotype of an individual (e.g., size) at each index
value (e.g., age) is the sum of additive-genetic and non-
genetic (environmental) components that are normally
distributed. The evolutionary change over one generation
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in the mean value of the trait at index value a is as follows
(Equation 1):

Dz̄ðaÞ ¼
Zamax

amin

Gða; xÞbðxÞdx [1]

Equation 1, derived by Kirkpatrick and Heckman [11] (also
see [12,14]), shows that evolutionary responses depend on

the additive-genetic covariance function, G, and the selec-
tion gradient function, b(x). The value of Gða; aÞ gives the
additive-genetic variance for the trait at index value a, and
Gða1; a2Þ gives the genetic covariance between the traits at
index values a1 and a2. G can be evaluated at any index
values (within the range of the data), regardless of whether
data were taken at those values. The function b(x)
describes the strength of directional selection favoring
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Figure 1. Three representations of genetic variation for size in salamanders. The data are from three ages: 83%, 88%, and 93% of the larval period. Univariate (a): the size

distributions for individuals (black) and the means of full sib families (gray) at Age 1. Multivariate (b): scatter-plots showing the bivariate distributions of family means for

size at three ages (83%, 88%, and 93% of the larval period, t1, t2, and t3). The estimated genetic covariance matrix is at the lower right. Function-valued (c): size as a

continuous function of age. At left, the family means are shown in broken lines, and the population mean in black. At right, the estimated genetic covariance function. Data

replotted from [9].
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an increase (if positive) or decrease (if negative) in the trait
at index value x. For example, for size as a function of age,
b(x) indicates selection favoring increased or decreased size
at different ages, such as the age of first reproduction [15].
Similarly, for thermal performance traits, b(x) indicates
selection favoring increased or decreased performance at
different temperatures [16,17].

Function-valued methods also allow a more precise
evaluation of evolutionary constraints, through the
estimation of the eigenvalues and eigenfunctions (the

function-valued equivalent of a principal component anal-
ysis) of G. Box 1 shows the eigenfunctions of G for the
salamander population from Figure 1. Eigenfunctions
identify changes in the function-valued trait for which
there is abundant genetic variation, and those lacking
genetic variation. The changes for which there is very little
genetic variation are said to be in the nearly null space of G:
a region of phenotypic space that is off limits to evolution
because of a lack of genetic variance. The nearly null space
is the function-valued equivalent of the evolutionary lines
of greatest resistance [8]; the leading eigenfunctions are
the function-valued equivalents of evolutionary lines of
least resistance [18,19]

An additional statistical advantage of eigenanalysis of
function-valued traits is that it can be used to reduce the
number of parameters estimated: in some cases, the first
few eigenfunctions explain most of the genetic variation in
a function. By estimating the leading eigenfunctions, one
gains improved statistical power and accuracy in estimat-
ing both selection responses and the nearly null space
[20,21]. An important question is when low-dimensional
representations of high-dimensional phenotypes can fully
capture relevant evolutionary properties, such as the abil-
ity to respond to selection. Although studies of function-
valued traits suggest that most genetic variance typically
exists in fewer dimensions than the number of independent
‘traits’ investigators perceive and measure (e.g., [22,23]),
results from studies of traditional multivariate traits are
mixed [24–26]. More genetic studies on a wider variety of
function-valued traits, along with artificial selection
experiments, will clarify whether some dimensions of phe-
notypes and function-valued traits are lacking genetic
variance and unable to respond to selection.

Box 1. Eigenfunctions of a genetic covariance function

The function-valued perspective quantifies patterns of variation that

can lead to a response to selection with the genetic covariance

function, G. Figure 1c (main text) shows this function for the

salamander data [9]. The estimated covariance function is not

restricted to a particular form, except for a few mild conditions,

including having non-negative variances, correlations in the range

(–1, 1), and eigenvalues � 0. Although the covariance function gives a

complete description of genetic variation in the population, there is an

alternative way to view the data that often facilitates understanding.

The covariance function can be decomposed via principal compo-

nents analysis as (Equation I):

Gðx ; yÞ ¼
X1
i¼1

li’iðxÞ’i ðyÞ [I]

In Equation I, the i-th eigenfunction, wi, is the function-valued equiva-

lent of an eigenvector, and represents a direction of genetic variation

[22]. The corresponding eigenvalue li quantifies the amount of genetic

variation explained by that direction. The eigenfuntions, wi, represent

statistically independent avenues along which a function-valued trait

can evolve [22]. In practice, one tends to consider only the most

important directions of variation, that is, only the wis corresponding

to the largest lis. Figure I shows PC1 and PC2; that is, w1, (91% of

genetic variation) and w2 (8.9% of genetic variation) for the salamander

data.

Selection can cause rapid changes in the space of the PCs with large

amounts of genetic variation. Figure I shows that there is abundant

variation for increasing or decreasing size at all ages: w1 explains most

of the genetic variance, and is always above the x-axis, indicating

positive genetic covariance in size across ages. By contrast, there is

much less variation for w2, which describes changes that have

opposing effects on size at early and late ages, illustrated by w2

crossing the x-axis. The selection response will be very slow (or zero)

for changes corresponding to eigenfunctions with little (or no)

variation. In these salamanders, there is almost no measurable

variation for more complicated deformations of the growth trajectory,

for example increasing size at early and late ages and decreasing size

at intermediate ages.
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Figure I. Eigenfunctions for the genetic variance–covariance functions for

salamander growth. Reproduced, with permission, [9].
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Figure 2. Measurements made at differing ages (filled symbols) and underlying

growth curves for two individuals.
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Working with covariance functions also allows better
estimation of breeding values, an important parameter in
both basic and applied contexts [13]. In applied settings,
many traits under artificial selection in domesticated ani-
mals vary with physiological status: for instance, milk
production is a function of the number of days since calv-
ing. Cattle breeders quickly appreciated the merits of
function-valued analyses, and most large dairy breeding
programs now use them (via random regression) to deter-
mine the genetic value of individuals and herds [27,28]. A
consistent result has been that function-valued methods
provide more accurate estimates of breeding values than
do traditional multivariate methods [28,29].

Implementation methods: an overview
Template functions and ‘parameters as data’

Given the advantages of function-valued approaches, what
implementation strategies exist? In general, three
approaches are possible. One approach is to analyze vari-
ation around a template function with the desired shape or
biological interpretation (Box 2). Another is to assume a
specific parametric form of the curve for each individual or
genotype, and estimate the curve parameters of each
individual or genotype. One then uses these parameters

as ‘data’ for subsequent analyses of patterns of genetic
variation, natural selection, or treatment comparisons
(e.g., [30]). Studies such as this, for example, have charac-
terized reaction norms [31,32] and tolerance to herbivory
[33,34] for genotypes with linear or quadratic regression.
The ‘parameters as data’ approach requires each individu-
al or genotype to have sufficient data, and makes the
restrictive assumption that all individuals or genotypes
are fully characterized by the chosen parametric model.
The method is also inefficient: each curve is fitted indepen-
dently, meaning that information from the entire data set
is not utilized simultaneously. An additional complication,
rarely addressed, is that regressions for individuals and
genotypes are estimated with error, and properly account-
ing for these errors through subsequent analyses can be
problematic (but see [30,35]).

Mixed models and random regression

In evolutionary studies, an alternative is to use a mixed-
model framework to model variation in individual curves
around a mean trajectory, while accounting for genetic
relationships between individuals. The methods are closely
related to other applications of hierarchical modeling, in-
cluding individual growth curve analysis [36]. Several

Box 2. Decomposing modes of variation

For many function-valued traits, there are biological constraints on

the possible shapes of curves and variation in them. A benefit to

analyzing curves rather than measurements is that these constraints

can be used to design biologically motivated hypothesis tests.

One approach, known as template mode variation (TMV) [67],

assumes a common template shape or function for all individuals

and genotypes. Thermal reaction norms for biological rates (perfor-

mance curves) are typically non-negative functions with a single,

intermediate maximum. Deviations from the mean template curve

for each individual represent phenotypic and genetic variation of

interest.

The TMV approach tests specific a priori hypotheses about the

modes of variation in performance curves (Figure I) [67]. A vertical

shift in the curve implies differences in overall performance; if

performance is closely linked to fitness, individuals with a positive

vertical shift (above the dashed line) would have higher fitness under

all conditions. Both the horizontal shift and the specialist–generalist

modes illustrate a constant area trade-off [94], where increases in

performance under any specific condition decrease performance

elsewhere. These three modes of variation can be characterized by a

three-parameter model that quantifies variation around the template

curve [67]. One of the strengths of the TMV method is that it

partitions the variance in parallel to these specific hypotheses. The

constant-area assumption is inherent to the TMV model, and allows

tests of hypotheses of interest about trade-offs, but may not be

applicable to scenarios lacking explicit biological hypotheses about

trade-offs.

One recent study applied TMV to thermal performance curves in

Drosophila serrata [90]. Isofemale lines were established from three

populations; locomotor activity was measured on males and

females at seven different temperatures. The TMV model explained

from 12% to 34% of the variance, with more variation explained in

females than in males. No sex or population exhibited more than

1% of the variance in vertical shift. The specialist–generalist mode

explained the most variance (7–28%), followed by the horizontal

shift (1–11%). These data suggest that rather than good ‘all

purpose’ genotypes, or particular temperature specialists, most

genetic variation in thermal performance was of the ‘Jack of all

trades is the master of none’ variety. The major limitation at this

time is that methods for comparing two or more groups are not yet

available.
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Figure I. In template mode variation analyses [67], variation is statistically

partitioned among three components: vertical shift, specialist–generalist, and

horizontal shift.
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software packages have this capacity, including SAS [37],
WOMBAT [38], ASREML [39], and R [40]. When fitting
functions, it is useful to write them as a weighted sum of
curves of known shape (basis functions); the set of curves can
be simple, yielding linear or multiple regressions, or they
can be more flexible, yielding, for example, B-splines or
Legendre polynomials. The coefficients of these curves are
viewed as random variables, varying from individual to
individual. The regression coefficients and overall popula-
tion parameters can be estimated by restricted maximum
likelihood and other linear mixed model techniques [41]. By
making use of individuals of known relatedness, variation in
the regression coefficients can be partitioned into genetic
and environmental deviations. The resulting estimates of
genetic and environmental covariance matrices of the ran-
dom regression coefficients can then be used to calculate
genetic and environmental covariance functions. Variation
attributable to random effects (typically sires, although
other quantitative genetic units are possible) are used to
estimate G. Importantly, G describes patterns of genetic
covariation in the focal trait, exactly analogous to G, except
that it is a function of the index variable. G can be evaluated
at specific values of the index variable to present G.

The random regression approach has several advan-
tages: (i) the linear mixed model, REML framework facil-
itates statistical inference and hypothesis testing; (ii) by
using a function that is of lower order than the number of
observations per individual, fewer parameters are estimat-
ed, resulting in enhanced power and accuracy; (iii) breed-
ing values for individuals can be estimated at any point
along the index variable; and (iv) it can also be used to
analyze phenotypic covariance functions [42].

The random regression approach, when implemented
with polynomials, has potential limitations worth noting.
First, higher-order polynomials are ‘wiggly’ [43], with
curves sometimes exhibiting dramatic oscillations. Cubic
or higher-order polynomials can suffer from ‘end of range’
problems: errors associated with estimation at the
extremes of the data can be severe, especially when there
is imbalance in the number of records at each end of the
range [44,45]. These problems can usually be detected by
comparing G when evaluated at the end of the range of the
data to a multivariate estimate of G (e.g., [43]); they can
also be mitigated by using one type of basis function (e.g.,
splines) to model the mean trajectory, and a second type of
basis function (e.g., polynomials) to model the individual
differences from the mean [44]. Judicious model fit is
essential; a common approach is to start with simple
models, increase the order of fit, and use likelihood ratio
tests (or information criteria) to evaluate when the model
likelihood does not improve significantly. It is important to
include appropriate fixed effects (block, year, etc. [44]), and
evaluate model fit of both odd- and even-ordered polyno-
mials. Collectively, these considerations suggest that for
any study, the sensitivity of the conclusions to the choice of
basis function, model fit, and mode of analysis should be
evaluated.

Case studies
Function-valued methods have been applied to numerous
ecological and evolutionary topics: a representative sample

(Table 1) includes diverse organisms (flies, humans, free-
living mammals, and birds), traits (gene expression, ther-
mal performance, aging, allometry, and phenology), and
techniques (manipulative experiments and long-term mon-
itoring). We highlight studies illustrating promising appli-
cations.

Sexual selection and behavioral preference functions

Female preference functions for traits of potential mates
are important for understanding the evolution of mating
behavior and the form and strength of sexual selection
[46,47]. Ritchie and colleagues have examined female mat-
ing preference as a function of song syllable number in
katydids [46] and song frequency in fruit flies [47] to test
alternate models of sexual selection. Because female mat-
ing preferences vary as a function of male traits and their
social environment, they are readily analyzed as function-
valued traits in the same manner as ‘typical’ plastic traits
or reaction norms that change in response to environmen-
tal or ecological conditions [48,49].

McGuigan et al. [49] used a novel application of function-
valued analyses to examine genetic variation in female
preferences for multiple male traits. In their experimental
design, female flies generated via a half-sib mating design
were given a choice between mating with two male flies: a
focal fly and another from the laboratory population. Focal
male flies were scored for mating success (successful or
unsuccessful), and for nine continuously varying cuticular
hydrocarbon (CHC) traits. Because the females came from
a mating design, McGuigan et al. [49] used random regres-
sion to estimate genetic variation and covariation in female
preferences for the nine male CHC traits; male CHC traits
were the index variables in the random regression. The
first principal component (PC) of the female preference
function explained 64% of the genetic variation, suggesting
high genetic correlations among female preferences for
different male traits [49]. We expect that similar efforts
describing mating preference functions can be profitably
applied to other studies of sexual selection.

The functional approach exemplified by these studies
[46–49] can also be applied to other studies of behavioral
preferences. Herbivore preference functions for different
host plants or defensive chemicals could be constructed in a
manner similar to constructing female preference func-
tions for male phenotypes. Likewise, in systems where
foraging or behavioral decisions are made in response to
multiple factors, the covariance between preferences to
multiple stimuli can be evaluated with random regression.
Application of function-valued methods in a quantitative
genetic framework would facilitate testing hypotheses
about evolutionary potential and constraint in preference
functions.

Environmental sensitivity of genetic correlations

The long-term studies of feral Soay sheep (Ovis aries)
illustrate how novel function-valued methods can be ap-
plied to long-standing questions. Intensive monitoring of
the population has resulted in a detailed pedigree, along
with morphological and life-history measurements. Robin-
son et al. [50] applied random regression models to exam-
ine phenotypic, genetic, and environmental correlations
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between horn length, body weight, and parasite load as
functions of environmental quality. Environmental quality
was estimated as the fraction of lambs that survived the
year, providing a continuous index variable reflecting good
and bad years for sheep survival. The authors found that
genetic correlations among ecologically important traits in
a wild population were weaker under benign environmen-
tal conditions, as predicted by laboratory-studies [51] and
theory [52].

The approach used by Robinson et al. [50] (also see [53])
suggests promising avenues for future research. Defining
environmental quality in a way that integrates the abiotic
and biotic consequences for the organism leads to a com-
posite measure of good and poor environments in a rele-
vant ‘currency’. Their approach, which is reminiscent of the
phytometer method of using the performance of tester
plants to measure environmental quality [54–56], suggests
a new means of assaying how environmental quality
affects variation and covariation in ecologically important
traits. Their approach holds great promise for systems not
amenable to experimental manipulation, or to field or

common garden experiments where the relevant biotic
and abiotic factors are unknown.

Limitations
Although the logic of treating traits as functions is com-
pelling, there are two challenges to routine adoption
of function-valued approaches: the cost of additional
measurements (both obtaining and analyzing them) and
unfamiliarity with function-valued analyses.

To use function-valued approaches, multiple measure-
ments per individual or genotype are required, which for a
fixed effort or cost, conflicts with maximizing the total
number of individuals and genotypes; this limitation
applies equally to multivariate approaches. In some cases,
the quality of the additional information gained can make
up for reduced sample sizes. Behavioral data are commonly
gathered as counts of discrete acts captured on videotape.
It requires only a change in perspective to record the time
of each act, as well as their total number.

For all the practical difficulties in gathering function-
valued data, perhaps a bigger hurdle is a lack of

Table 1. Exemplar studies applying function-valued methods to test ecological and evolutionary hypotheses

Index variable Focal variable Species Approacha Refs

Age Growth Finches (Fringilla coelebs,

Carduelis chloris, and

Carpodacus erythrinus)

LP [68]

Growth Blue tit (Parus caeruleus) LP [69]

Annual fitness Flycatchers (Ficedula albicollis) RRAM, LP [70]

Wheel running behavior House mice (Mus domesticus) RM-ANOVA [71]

Early-life fecundity and aging Red deer (Cervus elaphus) RRAM [72]

Early and late fecundity Humans (Homo sapiens) RRAM, LP [73]

Transcriptome Fruit fly (Drosophila melanogaster) CP [74]

Size Bighorn sheep (Ovis canadensis) RRAM, LP [75]

Age-specific reproduction Soay sheep (Ovis aries) and red deer (C. elaphus) RR [76]

Weight and leg length Soay sheep (O. aries) RRAM, LP [77]

CHC Mating preference in two

environments

Fruit fly (Drosophila serrata) RR [78]

Mate choice Fruit fly (Drosophila bunnanda) RR [49]

Mating success Fruit fly (D. serrata) RR [79]

Condition Mating success Fruit fly (D. bunnanda) RR [80]

Environmental quality

(survivorship of lambs)

Horn length, body weight,

and parasite load

Soay sheep (O. aries) RRAM, LP [50]

Birth weight Soay sheep (O. aries) RRAM, LP [53]

Heat resistance High temperature stress Fruit fly (D. serrata) Artificial selection [81]

Size Allometry Threespine stickleback (Gasterosteus aculeatus) RR [82]

Temperature Egg laying Common gull (Larus canus) RRAM, [83]

Growth rate Snails (Potamopyrgus antipodarum) TMV [60]

Locomotor performance Wasps (Aphidius ervi) LP [84]

Egg laying and clutch size Great tit (Parus major) RRAM, LP [85]

Breeding timing Great tit (P. major) RRAM, LP [61]

Growth rate Cabbage white (Pieris rapae) TMV [86]

Growth rates Cabbage white (P. rapae) RR, LP [87]

Growth rate Bacteriophage (G4) TMV [88,89]

Locomotor activity Fruit fly (D. serrata) TMV [90]

Growth Coho salmon (Oncorhynchus kisutch) LP [91]

Timing of reproduction Great tit (P. major) RRAM [92]

Temperature and age Growth rate and wheel running Cabbage white (P. rapae) and house mice

(M. domesticus)

LP [67]

Time Speech and sound Humans (H. sapiens) Phylogeny [93]

aAbbreviations: CP, Character Process model [43,74]; LP, Legendre polynomials fit to covariance matrix; RR, random regression; RM-ANOVA, repeated measures ANOVA;

RRAM, random regression, animal model; RR, LP, random regression on Legendre polynomials; TMV, template mode of variation.
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knowledge. Even if the potential advantages are clear,
mastering the necessary statistical machinery and soft-
ware can be challenging. The task of choosing a basis
function falls outside the education of many biologists.
The relevant literature is highly technical. Many
advances are presented in the statistics or animal breed-
ing literature, which are not widely read by ecologists or
evolutionists; there is no textbook on function-valued
analyses in ecology and evolution (but see [57–59] for
a start). Although function-valued trait analyses can be
implemented in many software packages, user-accessi-
bility could often be improved.

Prospects
Functional analyses have been instrumental in quantify-
ing patterns of genetic variation and evolution for thermal
performance curves. To our knowledge, function-valued
methods have not been applied to other types of nonlinear,
continuous reaction norm, despite a substantial literature
on reaction norm variation and evolution. There are excel-
lent opportunities to evaluate whether the lessons learned
from functional analyses of temperature apply to other
types of phenotypic plasticity.

Function-valued methods are ideally suited for addres-
sing key questions in how organisms will cope with global

Box 3. Function-valued phenogenomics

Geneticists are increasingly able to manipulate gene expression to

observe phenotypic effects. These experiments can be a powerful tool

for understanding the genotype–phenotype map critical to evolu-

tionary inferences about the nature of selection on the genome. Such

experiments yield a response to genetic manipulation that is actually

an entire function. A challenge is to take advantage of the function-

valued nature of the data during analysis.

The level of expression of Sonic hedgehog (SHH) in the developing

vertebrate brain is a candidate process generating variation in the

upper jaw and face. Young et al. [95] manipulated SHH in chicken

embryos by injecting embryos with SHH antibody expressing cells to

knock expression down, or with SHH protein to increase expression,

resulting in treatments that ranged from a near absence of SHH

expression (on the left of Figure Ia), to a doubling over normal levels

(on the right of Figure Ia). Embryos were scanned by microcomputed

tomography, and the three-dimensional surfaces of the embryonic

head constructed. A network of 67 recognizable landmarks was

analyzed using geometric morphometric methods, a family of

multivariate techniques that respect the spatial locations of the

sampled points, and approximates the functional surfaces of

interest. The results clearly show the quantitative sensitivity of

morphology to the SHH dose in the developing forebrain (Figure Ib),

supporting the idea that variation somewhere in the SHH signaling

cascade can account for the variation in facial width, for example in

humans, where the width of the face is a major axis of variation

among phenotypically normal individuals. An important challenge

and goal is to analyze the entire set of surfaces recovered, not just the

landmarks.

SHH-dosage vs. Midfacial shape
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Figure I. The relationship between sonic-hedgehog dosage and aspects of morphological shape. Modified, with permission, from [95].
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climate change [60,61]. Climate change is altering several
key index variables (temperature, seawater pH, and salin-
ity), and function-valued methods are ideally suited for
estimating genetic variation in organismal performance
across these continuous gradients, and the potential for
genetic constraints.

An additional challenge to the functional view of pheno-
types that we have advocated is the combined analysis of
multiple functions: many common phenotypes are multi-
functional. To understand development, it is not enough to
characterize the spatiotemporal pattern of gene expression;
one must integrate it with, among other things, the pattern
and direction of cellular proliferation, which is itself a
function of space and time. Quantitative characterization
of the genotype–phenotype map can be thought of as a
complex function-valued problem. Ecologically, the distri-
bution and abundance of species is clearly multifunctional:

variables such as intra- and interspecific density, tempera-
ture, disturbance regime, and the availability of light, water,
and nutrients operate together, frequently co-vary, and all
affect the expression of phenotypic and genetic variation of
populations.

Fortunately, increasing efforts to devise automated
measurement techniques are resulting in high-dimension-
al functional data (Box 3). An automated analysis of be-
havior of groups of organisms gives rise to extensive time
series of individual behavior [62,63]. Falling costs of tran-
scriptomic analyses will make time courses of expression of
tens of thousands of genes routine. Image analysis allows
temporal characterization of development at the cellular
level. Detailed characterization of multiple ecological vari-
ables is more feasible given automated monitoring equip-
ment. Although challenges remain (Box 4), as inherently
functional data become more common, functional analyses
become necessary, rather than just a promising idea.

Efforts to take advantage of the full information in
biological functions will be of particular value to integra-
tive studies of ecology and evolutionary genetics. The
usually abundant natural variation in phenotypes within
and among populations constantly generates experiments
that provide one with the ability to disentangle causes from
correlations [64]. With a sufficiently accurate representa-
tion of phenotypes, it will be possible to determine which
aspects actually cause differences in performance and
fitness [65]. Such detailed information can suggest ecologi-
cal mechanisms underlying those differences. Similarly,
pairing the detailed phenotypic targets of selection with
their genetic basis connects the indirect genomic signa-
tures of selection with the actual forces causing evolution
[66].
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