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Explaining the apparent paradox
of persistent selection for early
flowering

Summary

Decades of observation in natural plant populations have revealed

pervasive phenotypic selection for early flowering onset. This

consistent pattern seems at odds with life-history theory, which

predicts stabilizing selection on age and size at reproduction.Why is

selection for later flowering rare? Moreover, extensive evidence

demonstrates that flowering time can and does evolve. What

maintains ongoing directional selection for early flowering? Several

non-mutually exclusive processes canhelp to reconcile the apparent

paradox of selection for early flowering. We outline four: selection

through other fitness components may counter observed fecundity

selection for early flowering; asymmetry in the flowering-time–
fitness function may make selection for later flowering hard to

detect; flowering timeandfitnessmaybecondition-dependent; and

selection on flowering duration is largely unaccounted for. In this

Viewpoint, we develop these four mechanisms, and highlight areas

where further study will improve our understanding of flowering-

time evolution.

Introduction

Flowering at the correct time is critical to plant fitness. Timing of
flowering onset determines the environmental conditions experi-
enced during pollen, ovule, and seed development (Rathcke &
Lacey, 1985), and the nature of interactions with mutualists (e.g.
pollinators, O’Connell & Johnston, 1998; Thomson, 2010;
Rafferty & Ives, 2011) and antagonists (e.g. seed predators,
Augspurger, 1981; Pilson, 2000; Parachnowitsch & Caruso,
2008). Because flowering amounts to committing meristems to
reproduction rather than to vegetative growth, flowering time
affects plant size, growth patterns, and architecture (Geber, 1990;
Duffy et al., 1999; Kudoh et al., 2002). Within a community
context, co-flowering with other species may intensify competition
for (or facilitate access to) pollinators or abiotic resources
(Mosquin, 1971; Stiles, 1977; Waser, 1978; Kunin, 1993). For
these and other reasons, we expect natural selection to direct
population mean flowering time towards a local optimum. There
is, however, no a priori expectation that selection should act
predominantly in one direction. Yet several meta-analyses and

reviews (Geber & Griffen, 2003; Harder & Johnson, 2009;
Mungu�ıa-Rosas et al., 2011) have demonstrated not only that
phenotypic selection acts on flowering time, but also that early
flowering is overwhelmingly favoured. Why?

A rich body of life-history theory establishes testable predictions
for the evolution of flowering time (e.g. Cohen, 1971; King &
Roughgarden, 1983; Ejsmond et al., 2010; for overviews see
Stearns, 1976; Roff, 1993). Almost all life-history models assume a
trade-off between the timing-of and size-at reproduction, such that
plants that flower early flower at a small size. The optimal timing of
reproduction depends on the rate of pre-reproduction mortality
and on season length (e.g. as dictated by a killing frost or drought
onset). High mortality rates and/or short seasons favour flowering
earlier, at a smaller size, and thus, with fewer resources; low
mortality rates and longer seasons favour later flowering. Selection
arises from the size–time trade-off. Plants switching from growth to
reproduction too early will mature seed before the end of the
growing season, but are small with fewer resources to invest in
reproduction. Those making the switch late are large and have
ample resources to support reproduction, but risk mortality before
seed maturation. If a population is at its flowering-time optimum,
selection is expected to be stabilizing or weak. It is only when early-
life mortality rate or season length changes (e.g. through global
change, dispersal to a new environment, range expansion, etc.) that
directional selection should act to shift the population mean.

Exhaustive empirical evidence supports the basic premise that
flowering time evolves through natural selection. Several species
exhibit geographic clines in flowering time corresponding to
season-length clines (e.g. VanDijk et al., 1997; Stinchcombe et al.,
2004; Wadgymar et al., 2015), and reciprocal-transplant experi-
ments frequently reveal these to be adaptive (e.g. Griffith &
Watson, 2005; Hall & Willis, 2006; Colautti & Barrett, 2010;
�Agren & Schemske, 2012; Anderson & Gezon, 2015). Moreover,
evolutionary responses to selection on flowering time have been
observed during artificial selection (e.g. Dorn & Mitchell-Olds,
1991;Burgess et al., 2007;VanDijk, 2009; Sheth&Angert, 2016),
local environmental change (Franks et al., 2007), and species
invasion (Montague et al., 2007; Hodgins & Rieseberg, 2011;
Turner et al., 2014). Herein lies a paradox. (1) If selection truly
favours early flowering most of the time, and plants can respond to
that selection, why does selection for earliness persist? (2) Why is
phenotypic selection for later flowering rare?

Ongoing global change may be partially responsible for
widespread selection for early flowering (Anderson et al., 2012).
Advancing flowering phenology has been well documented
globally (Fitter & Fitter, 2002; Amano et al., 2010; Ellwood
et al., 2013), and some of the advances (particularly in short-lived
species) could represent evolutionary responses to shortened
seasons or increased juvenile mortality (e.g. Franks et al., 2007;
Anderson et al., 2012). However, season length is not universally
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decreasing – in fact, global change is often associated with
lengthening seasons (Kunkel et al., 2004; Reyes-Fox et al., 2014)
– and the observed changes in flowering phenology of perennials are
likely predominantly plastic. Moreover, selection often favours
early flowering even in growth chamber, glasshouse, and garden
environments with negligible mortality (e.g. Simonsen & Stinch-
combe, 2010; Kenney et al., 2014; Stock et al., 2015). The
prevalence of phenotypic selection for early flowering therefore
demands other explanations.

In this Viewpoint, we examine four non-mutually exclusive
mechanisms that could produce (apparent) selection for early
flowering.Where appropriate, we draw attention to parallels in the
animal literature. Previous reviews (Rathcke & Lacey, 1985;
Primack, 1987; Elzinga et al., 2007; Ehrl�en, 2015) helped to
motivate the studies that have revealed the pattern of selection for
early flowering.Now that the pattern has been documented,we aim
to motivate studies that will explain it.

Selection through other fitness components may
balance fecundity selection

The widespread pattern of phenotypic selection favouring early
flowering generally rests on observations of just one fitness
component: fecundity (i.e. the association between flowering time
and seed production). The focus on fecundity selection neglects the
expectation of multiple episodes of selection on flowering time
throughout the life-cycle (Primack, 1987; Ehrl�en, 2015). For
example, where flowering time is genetically correlated with
herbivore resistance (Weinig et al., 2003; Colautti et al., 2017),
water-use efficiency (McKay et al., 2003; Kenney et al., 2014),
functional traits associated with resource acquisition (Sheth &
Angert, 2016), or other traits, flowering-time genotype likely
predicts survival to flowering. Selection for late flowering might
therefore be occurring early in the life-cycle. Viability selection for
late flowering could in principle oppose fecundity selection for
early flowering (see Wadgymar et al. (2017) for an example), such
that total (viability + fecundity) directional selection is weak or
absent. Total selection could, in fact, even be stabilizing (McGloth-
lin, 2010), as is predicted by life-history theory.

Given its potential to account for the paradox of persistent
selection for early flowering without response, estimating early-
acting viability selection on flowering time is a research priority. Of
course, estimating the effect of a trait on survival before that trait is
expressed (i.e. selection on the ‘invisible fraction’, Grafen, 1988) is
inherently difficult (Hadfield, 2008). Solutions include recording
mortality in pedigreed populations (e.g. Mojica &Kelly, 2010; see
also Sinervo & McAdam (2008) for example in side-blotched
lizards), and experimental manipulations that ‘rescue’ the invisible
fraction from early mortality. Bennington &McGraw (1995), for
example, thinned either small plants likely to die before flowering
(conventional thinning), or large plants that would have otherwise
crowded small individuals (invisible fraction rescue) to observe
effects on adult trait distribution and selection in experimental
populations of jewelweed (Impatiens pallida). An additional
strategy could be to apply artificial viability selection to an early-
life trait (e.g. water-use efficiency), and measure any correlated

response in flowering time over generations. This approach awaits
testing.

Asymmetry in the fitness function makes selection for
late flowering harder to detect

Under certain conditions, the function relating the timing of a life-
history event to fitness is expected to be asymmetric (e.g. Fig. 2a in
King & Roughgarden, 1983), a point recognized in animals
(Mountford, 1968; Singer & Parmesan, 2010). Asymmetry in the
fitness function arises because the penalty for reproducing too late
(reproductive failure) is stronger than that for reproducing too early
(fewer resources to invest in offspring production). As a result,
populations flowering earlier than the local optimum experience
weaker selection than populations flowering later than the
optimum (Fig. 1; Fig. 1b in Weis et al., 2014), and weaker
selection differentials are harder to detect. In fact, populationmean
flowering time could be oscillating around its local optimum, but
we would fail to recognize the net neutral nature of selection over
seasons/generations because we only detect selection when the
mean falls on the late side of the optimum.

Populations generally do not occupy the entire hypothetical
range of phenotypic space (Wright, 1932; Kingsolver, 1988).
Ascertaining the shape of the full fitness function therefore requires
artificially enhancing phenotypic variance in flowering time, for
example by manipulating flowering times (Shitaka & Hirose,
1998), sampling (or crossing) individuals from populations with
divergent flowering times (Weis et al., 2014), or mathematically
constructing absent phenotypes (O’Neil, 1999). Furthermore,
detecting asymmetry in the fitness function requires statistical tools
beyond the linear and quadratic regression typically employed in
selection analysis.Weis et al. (2014) demonstrate the application of
useful methods including locally weighted polynomial regression,
parametric nonlinear regression, and piecewise regression; other
options include cubic splines (Schluter &Nychka, 1994) and their
generalizations (Morrissey & Sakrejda, 2013).

Flowering time, size, and fitness are condition-
dependent

The predictions of life-history theory rest on a trade-off between
timing of reproduction and size at reproduction. In natural
populations of both annuals and perennials, however, individuals
flowering early are often larger than those flowering late; indeed, in
24 of 28 studies surveyed by Forrest (2014), the observed
correlation conflicts with the assumed pattern. Larger size with
earlier flowering can be explained by condition-dependence:
individuals in better condition – whether because of microhabitat
quality, age, or stored resources – are able to flower earlier, and at a
larger size. Similar arguments are made for birds (Price et al., 1988;
Rowe et al., 1994), small mammals (R�eale et al., 2003), and insects
(Rowe & Ludwig, 1991). Condition-dependence may reflect
environmental heterogeneity if individuals with better access to
resources grow and flower faster (Ehrl�en & M€unzbergov�a, 2009;
Forrest, 2014). Consequently, estimates of direct selection on
flowering time will be biased by exclusion of an important trait (i.e.
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condition, or environmental quality) from the analysis (Mitchell-
Olds & Shaw, 1987; Rausher, 1992). These biases can be large
(Stinchcombe et al., 2002), such that the true nature of direct
selection on flowering-time genotypes might differ substantially
from the persistent selection for early flowering emerging from
meta-analyses of phenotypic selection.

Condition-dependence can also explain the lack of response to
pervasive selection for early flowering. If the covariance between
flowering time, size, and fitness is purely environmental, then there
is no genetic covariance between flowering time and fitness, and
response is not possible (Crow&Nagylaki, 1976; Price et al., 1988;
Stearns, 1989; Rausher, 1992; Stinchcombe et al., 2002). Three
techniques – experimentally dissociating genetically determined
flowering times and seasonal conditions (Austen & Weis, 2015),
directly manipulating food/nutrient availability (and, thus,
condition) across genotypes (e.g. Johansson et al., 2001), and
performing genetically based analyses of selection (Rausher, 1992;
e.g. Anderson et al., 2011) – can help predict evolutionary
responses in the face of environmentally based condition-
dependence. Consistent with life-history predictions, at least one
genetically based study of selection on flowering time has detected
selection for late flowering in a low-mortality environment, and for
early flowering in high-mortality environments (Fournier-Level
et al., 2013). Others, however, have found selection for early
flowering even when mortality rates are low (e.g. Simonsen &
Stinchcombe, 2010), suggesting that while condition-dependence
may frequently contribute to phenotypic relationships between
size, flowering time, and fitness, it is not a complete or universal
explanation for pervasive selection for early flowering.

Condition-dependence in the context of selection analysis is often
thought of as environmental in nature, but it may also reflect
variance in mutation load, because life-history traits like flowering
time are likely affected by many loci (Rowe & Houle, 1996).
Genetic condition-dependence is particularly likely under the
mixed-mating common in flowering plants (Goodwillie et al.,

2005): under mixed-mating, individuals vary in their inbreeding
coefficient and, thus, their expression of inbreeding depression
(Willis, 1996). If the correlation between flowering time and
condition is purely genetic, mutation–selection balance will main-
tain variance in flowering time despite selection (Houle et al., 1996),
as the segregating variation affecting flowering time is mainly
deleterious. Assuming the expression of deleteriousmutations tends
to delay flowering, genetically-based condition-dependence also
explains the pervasive pattern of selection for earlier flowering:
selection always favours increased condition and fitness. Willis
(1996) demonstrated that partial inbreeding depression inMimulus
guttatus – where some individuals exhibit inbreeding depression for
the traits of interest and fitness, while others do not – could
significantly bias estimates of phenotypic selection. He reported
estimates of phenotypic selection being biased for some traits,
including flowering time, by 20–50%. Artificial selection experi-
ments to increase anddecrease flowering timewould be a helpful test
of genetically-based condition-dependence. If genetic variation for
flowering time is at mutation–selection balance, then response to
selection for late flowering should be accompanied by deleterious
pleiotropic effects on other fitness and vigour components, for
example growth, size, male fertility, and survivorship. A combined
approach to evaluating the environmental and genetic basis of
condition-dependence in flowering time is probably required,
because both environmental and genetic factors likely underlie
condition-dependence in natural populations (Bonduriansky et al.,
2015).

Selection is favouring longer flowering duration

Individuals that flower early often flower longer than those that
flower late (Hendry&Day, 2005). Their longer flowering duration
may be supported by ongoing resource acquisition during
reproduction, achieved, for example, by continued addition of
vegetative modules during reproduction (e.g. Chamaecrista
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Fig. 1 Conceptual model illustrating the effects of fitness function asymmetry on the strength of selection for early vs late flowering time. Asymmetry arises in
the fitness function relating flowering time to reproductive output (dashed line) because the penalty for flowering after the end of the season (reproductive
failure) is greater than the penalty for flowering before the optimum (fewer resources to invest in offspring). The exact functional form could differ from that
depicted here without affecting conclusions, provided it is asymmetric. Given asymmetry, a population flowering later than the optimum (T), such that mean
flowering time = T + d (closed symbols), experiences greater variance in reproductive output, and thus stronger selection, than does an early population with
meanflowering time = T� d (opensymbols),despiteequal variance inflowering time.Thesemaybe twodistinctpopulations,or a singlepopulationflowering in
twodifferent years. Solid lines depict the linear associationbetweenflowering timeand reproductiveoutputwithinapopulation; the slope is steeper for the late-
floweringpopulation,particularlywhenexpressedona scaleof relativefitness and standardizedflowering time in the calculationof selectiondifferentials. Based
on Fig. 1(b) of Weis et al. (2014).
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fasciculata, Ipomoea hederacea, Medicago lupulina), or by photo-
synthetic reproductive organs (Bazzaz & Carlson, 1979; Earley
et al., 2009). Ongoing resource acquisition could lessen the penalty
for flowering early, by reducing the trade-off between onset and
size/resource status (see also point (2) earlier).

Given the correlation between flowering time and duration, we
need data on how selection acts on flowering duration to interpret
phenotypic selection on flowering time, but this is rarely reported.
Just asmoredays displayingon the lek increasesmatingopportunity
in some animals, a longer flowering duration may increase mating
opportunity in plants (Andersson, 1994; Murphy, 1998; Delph &
Ashman, 2006), leading to (indirect) selection for early flowering.
The strong multicollinearity between flowering time and duration
may preclude estimation of selection gradients (which measure
direct selection, accounting for correlated traits) on these traits, but
alternatives exist. Reporting selection differentials (which measure
direct and indirect selection through correlated traits) acting on
flowering time andduration (andpossibly flower number or display
size, e.g. Sandring & �Agren, 2009), along with the correlation
between them, is a simple first step (e.g. O’Neil, 1997). Path
analysis treating flowering duration as a multiplicative fitness
component (Conner, 1996; Austen &Weis, 2016a) offers another
approach to isolating fitness effects of flowering time independent
of its correlation with duration. Clever experimental designs that
allow for variation in flowering time but not duration, and vice
versa, might be useful here, although challenging to implement.

Looking forward

Now thatwehave a documentedpattern of phenotypic selection for
early flowering, it is time to ascribemechanisms to the pattern. The
four we have described – (1) selection on the invisible fraction, (2)
asymmetric fitness functions, (3) condition-dependence, and (4)
correlations between flowering onset and duration – can act alone
or together to overwhelm the selection for late flowering expected
when mortality rates are reduced or seasons are lengthened. Under
three of these mechanisms (1, 2, 4), persistent selection for early
flowering might not be a paradox at all. Instead, what we see as
selection for early flowering is in fact only part of the story, and
selection at other life stages, in other years, or on correlated traits
opposes the widely reported trend. Fluctuating selection over life
stages could sum to weakened directional selection, or even
stabilizing selection, on lifetime fitness (McGlothlin, 2010).When
fluctuations instead occur over generations, population mean
flowering time will be constrained within certain limits, as it is
under stabilizing selection. Consequences for the amount of
variation maintained, allele frequencies, and other parameters,
however, differ (Kondrashov & Yampolsky, 1996; Burger &
Gimelfarb, 2002). Under the remaining mechanism (3), selection
for early flowering is explained as selection on environmental or
mutational variance. All four mechanisms are amenable to
experimental, statistical, and genetic analysis that can reveal the
causes underlying selection for early flowering. Genetically-based
studies of selection on flowering time (and duration), experiments
extending flowering-time variance, statistical accounting for con-
dition, manipulations of the covariance between flowering time

and condition, and long-term pedigree studies of natural popula-
tions (modelled after similar work in free-living animals, e.g. Kruuk
et al., 2000; Stinchcombe, 2014) are all promising directions
forward. Still further insight will be gained through increased
attention to selection on flowering-time plasticity (Ehrl�en, 2015)
and to selection acting through the male component of fitness (e.g.
Devlin & Ellstrand, 1990; Austen & Weis, 2016a,b; see Forrest
(2014) and Austen et al. (2015) for theoretical predictions). Given
the central importance of flowering to plant fitness and evolution,
and the disconnect between expectations and data, explaining
selection for early flowering is imperative for plant evolutionary
ecologists.
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