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Summary

Understanding the evolutionary forces that shape genetic variationwithin species has long been

a goal of evolutionary biology. Integrating data for the genetic architecture of traits from

genome-wide association mapping studies (GWAS) along with the development of new

population genetic methods for identifying selection in sequence data may allow us to evaluate

the roles of mutation–selection balance and balancing selection in shaping genetic variation at

various scales.Here,we review the theoretical predictions for genetic architecture andadditional

signals of selection ongenomic sequence for the loci that affect traits. Next,we reviewhowplant

GWAS have tested for the signatures of various selective scenarios. Limited evidence to date

suggests thatwithin-population variation ismaintained primarily bymutation–selection balance
while variation across the landscape is the result of local adaptation. However, there are a

number of inherent biases in these interpretations. We highlight these challenges and suggest

ways forward to further understanding of the maintenance of variation.

I. Introduction

Genetic variation for quantitative traits is ubiquitous in nature yet,
despite widespread interest, we lack empirical data about the
evolutionary forces that shape this variation (Johnson & Barton,
2005; Mitchell-Olds et al., 2007). One hypothesis suggests that
variation exists as a balance between its creation bymutation and its
removal by selection, so that much of this variation is deleterious

(Barton & Keightley, 2002). Alternatively, some variation may be
maintained directly by balancing selection, either through within-
population processes like frequency-dependent selection or
through between-population processes, such as local adaptation
(Hedrick, 2006).A large body of theory has developed around these
alternative hypotheses but empirical tests of their relative impor-
tance have been limited.

A number of experimental approaches have attempted to
investigate the maintenance of genetic variation for quantitative
traits within species and we will briefly discuss two. First, Kelly*These authors contributed equally to this work.
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(1999) proposed that the contribution of rare, recessive alleles,
which is expected to be large under mutation–selection balance,
could be quantified through investigating the change in mean
phenotype through both inbreeding and directional selection.
Applications of this approach have been limited, but have
shown that rare, recessive alleles cannot fully explain the
variation in flower size in Mimulus guttatus (Kelly & Willis,
2001). Second, reciprocal transplant experiments have played a
crucial role in demonstrating the importance of local adaptation
(Hereford, 2009). However, while reciprocal transplant exper-
iments can tell us about the fitness of certain genotypes in
specific conditions, we need to estimate the selective pressures
acting on traits across longer timescales to understand how
selection has shaped the variation we see in the present.
Incorporating genomic information can provide crucial, com-
plementary information about the selective forces acting on
genetic variation (Harrison et al., 2016).

A direct approach to understanding the maintenance of
variation will involve generating a sample of loci that control
quantitative trait variation and describing how selection acts on
these loci (Stinchcombe & Hoekstra, 2008). Over the last decade,
genome-wide association studies (GWAS) have identified many
loci controlling variation in quantitative traits in a variety of
systems. In turn, increasingly sophisticated methods are being
applied to population genomics datasets to infer the action of
selection across the genome. Is it now possible to integrate
population genetics and GWAS to evaluate which selective
models best describe the genetic variation observed (Y. W. Lee
et al., 2014)? Or are we still unable to both detect a representative
sample of causal variants (Rockman, 2012) and identify the
selective forces acting on these variants (Tiffin & Ross-Ibarra,
2014), preventing us from making general conclusions about the
forces maintaining variation?

Here, we evaluate the potential of GWAS in plants to provide
insight into the maintenance of variation in plant species. We
first outline specific theoretical predictions for patterns of
variation under different selective scenarios. Second, we sum-
marize the studies to date that have used GWAS to investigate
the selective forces maintaining variation. Third, we explore the
continuing challenges with using GWAS to understand the
maintenance of variation and offer potential solutions to these
challenges.

II. Theoretical predictions

Linking patterns of genomic variation to various selective scenarios
is a key step to understanding how selection maintains trait
variation. A number of predictions have been made for what
variation in genetic loci under various selective regimes should look
like. These predictions encompass the effect size and population-
level frequency of alleles, along with the partitioning of variance
within and between populations (FST) and patterns of linked
neutral variation around selected loci. We review key predictions
later and relate them to what we expect for single nucleotide
polymorphisms (SNPs) associated with phenotypic traits under
various types of selection.

1. Negative selection against new mutations

Negative selection against new mutations can be a powerful force
shaping sequence variation (Hough et al., 2013). Negative
selection affects the frequencies of alleles segregating in a
population, so the allele frequency spectrum is often used to
describe the frequencies of segregating alleles and investigate the
selective forces acting on a group of loci. The allele frequency
spectrum (also called the site frequency spectrum) summarizes the
proportion of alleles present at various bins of allele frequency.
Often the allele frequency spectrum is folded, so that it tallies the
frequency of the minor (or rarer) allele while being agnostic as to
which allele is derived – this information is sufficient for estimating
the strength of negative selection (Keightley & Eyre-Walker,
2010).

Negative selection is expected to reduce the frequency of
deleterious alleles, leading to the prediction that alleles affecting
phenotypic variation should be rarer on average than neutral alleles
that do not affect phenotypes or fitness. The allele frequency
spectrum of a group of loci will indicate the strength of negative
selection acting on these loci in aggregate, and can be used to test for
negative selection acting on these loci (Fig. 1a). Because demog-
raphy can also affect the allele frequency spectrum of both selected
and unselected loci, methods formeasuring the strength of negative
selection acting on a group of loci generally compare the allele
frequency spectrum to a neutral allele frequency spectrum, often
taken from synonymous sites (Keightley & Eyre-Walker, 2010).

2. Stabilizing selection on traits

Although the allele frequency spectrum can provide clues about the
strength of selection acting on individual loci, incorporating
information about the relationship between these loci and trait
variation can provide important information about how selection
acts directly on traits. Stabilizing selection on a quantitative trait
should lead to a negative correlation between the effect size and
frequency of quantitative trait loci (QTLs) for that trait (Fig. 1b).
Specifically, alleles with large effects will be found at lower allele
frequencies than alleles with small effects, because negative
selection acts more strongly to reduce the allele frequency of
large-effect alleles compared with small-effect alleles. Another
consequence of this process is that much of the variance for traits
under stabilizing selection will be explained by rare large-effect
alleles (Turelli, 1984; Barton&Turelli, 1989; de Vladar&Barton,
2014).

3. Balancing selection within populations

The predictions for how balancing selection will shape the
frequencies of QTLs are more varied than those for negative and
stabilizing selection, in part because balancing selection encom-
passes a number of distinct properties, such as temporally variable
selection and negative frequency-dependent selection. At the
sequence level, we generally expect that loci subject to balancing
selection should be found at more intermediate allele frequencies
than neutral loci (Gillespie & Turelli, 1989; Turelli & Barton,

New Phytologist (2017) 214: 21–33 � 2017 The Authors

New Phytologist� 2017 New Phytologist Trustwww.newphytologist.com

Review Tansley review
New
Phytologist22



2004; Charlesworth, 2006) although balancing selection can also
maintain alleles at low or high allele frequencies (Gillespie, 2010).
Additionally, balancing selection can leave characteristic signatures
on patterns of linked neutral diversity, namely elevated levels of
polymorphism, and long-term balancing selection can also result in
trans-specific polymorphism (Charlesworth, 2006).

However, our ability to detect balancing selection in the genome
is limited for multiple reasons. First, although coalescent models of
balanced polymorphism are well-characterized (Kaplan et al.,
1988) the development of explicit model-based approaches that
identify balancing selection genome-wide has been limited until
recently (Leffler et al., 2013; DeGiorgio et al., 2014). Second, the
signature of long-term balancing selection on linked neutral
polymorphism can be difficult to detect, because recombination
and gene conversion can weaken the association between neutral
variants and the site under balancing selection (Andolfatto &
Nordborg, 1998). The effects of recombination and gene conver-
sion weakening the signature of balancing selection is one reason
why the clearest cases of balanced polymorphisms arise when
recombination is suppressed in a genomic region, such as at the self-
incompatability locus or on sex chromosomes (Charlesworth,
2006) or in inversions (Lee et al., 2016). However, low rates of
recombination in highly selfing plants mean that balancing
selection may in fact play a significant role in structuring patterns
of shared and unique variation across the genome of selfing species.
Overall, while we can detect some forms of balancing selection
using sequence data, we may miss many others using current
techniques.

4. Balancing selection across populations

A particular type of local adaptation, when mediated by antago-
nistic pleiotropy at a locus, can lead to between-population
balancing selection, although the distinction between balancing
selection acting at within- and between-population levels is not
always straightforward (Delph & Kelly, 2014). A few broad
approaches have been developed to identify local adaptation in
sequence data. First, because the loci involved in local adaptation
are likely to show increased between-population differentiation,
FST-based scans for between population differentiation are com-
monly used to identify candidate local adaptation SNPs
(Savolainen et al., 2013; Whitlock & Lotterhos, 2015). Specifi-
cally, FST measures the partitioning of variation between and
within populations, and signals of reduced within-population
variation relative to between population divergence is consistent
with local adaptation.

A second commonly sought-after signature of local adaptation is
the presence of local selective sweeps, the signature of reduced
neutral diversity left by the fixation of a positively-selected allele
(Smith & Haigh, 1974; Berry et al., 1991). A number of
approaches have been used to detect local selective sweeps in
progress, and thus, local adaptation, by specifically looking for
excess homozygosity between haplotypes (Toomajian et al., 2006)
or allele frequency shifts (Nielsen et al., 2005). The strength of
selection, the number of mutations fixed, and the previous
evolutionary history of beneficial mutations will affect the shape
of selective sweeps (Hermisson & Pennings, 2005; Pennings &
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Fig. 1 Patterns of genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) expected under various selective scenarios. (a) Negative
selection is expected to reduce allele frequencies, as observed from this allele frequency spectrum. Data fromWilliamson et al. (2014). (b) Under mutation–
selection balance, we expect a negative correlation between effect size and allele frequency. Data from Josephs et al. (2015). (c) A classic example of local
adaptation,human lactasepersistence, is largely controlledbyvariationat one locus: rs4988235.This locus is atmuchhigher frequency in Europeanpopulations
(CEU, Utah residents with Northern and Western European Ancestry) than in African populations (YRI, Yorubans). Data from The 1000 Genomes Project
Consortium et al. (2015). (d) The frequency of the tall allele at 163 human height-associated SNPs in French and Sardinian populations. For 104 of 163 alleles,
the tall allele is more common in the French population than the Sardinian population. Data from Berg & Coop (2014).
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Hermisson, 2006; Messer & Petrov, 2013), but differentiating
between different types of selective sweepswith sequence data is not
always straightforward (Schrider et al., 2015). FST and selective
sweep analyses test slightly different processes related to adaptation
but are commonly used concurrently.

5. Polygenic local adaptation

Local adaptation in traits with a polygenic basis can occur through a
process called polygenic adaptation: subtle shifts in allele frequency
at many loci. The allele frequency shifts involved in polygenic
adaptation may not leave clear signatures in sequence data. For
example, FST at the QTLs for a locally adaptive trait is less likely to
differ from background FST as the number of loci involved in a trait
increases or as gene flow between adaptively-diverging populations
increases (Latta, 1998; LeCorre&Kremer, 2003, 2012; Kremer&
LeCorre, 2012). This decoupling between trait divergence and FST
at QTLs for the trait occurs because there are many potential allelic
combinations that correspond to a given optimal trait value
(Kremer & Le Corre, 2012). Polygenic adaptation is also expected
to be difficult to detect using selective sweep tests. Signatures of
selective sweeps are not expected around small-effect loci involved
in polygenic adaptation because these alleles will take longer to
reach fixation, if they even fix at all (Chevin & Hospital, 2008;
Pritchard et al., 2010).

Nevertheless, polygenic adaptation can be detectable through
covariance betweenQTL allele frequency and the direction ofQTL
effects (Latta, 1998; Le Corre & Kremer, 2003). Concretely, this
means that the alleles that act in a certain direction will be more
common in certain populations if there has been local adaptation
for that trait. To illustrate the differences between different modes
of local adaptation, we show two examples of adaptation that have
occurred in humans (Fig. 1c,d). First, lactase persistence has
evolved through a large allele frequency change at one locus
(Fig. 1c). Local adaptation of the lactase persistence allele is
detectable due to elevated FST and selective sweep signatures
(Tishkoff et al., 2007). By contrast, evolution of human height has
proceeded through subtle allele frequency shifts at many loci
(Fig. 1d) and local adaptation has been detected through a test for
covariance between allelic effects and frequency (Berg & Coop,
2014). Specifically, alleles that increase height are, on average, at
higher frequency in the French population sample than the
Sardinian population sample. Although this strategy has proven
useful in human studies (Berg & Coop, 2014; Robinson et al.,
2015) it has not yet been widely applied in plant systems.

III. What GWAS have told us about selection on
quantitative traits

Association mapping studies have been conducted in a number of
plant species, across various traits and locations, in both population
samples and the offspring of multiple controlled crosses, and with
genetic information that ranges from a few hundred markers to
whole-genome sequence. We will not exhaustively review all plant
GWAS, but we instead highlight the findings from selected studies
that have attempted to linkGWAS results with selection (seeOgura

& Busch (2015) for a more comprehensive review). We include
GWAS formorphological traits, molecular traits such as expression
and methylation, and environmental traits, because all of these
traits may either be under selection directly or correlate with traits
under selection. It is important to note that many of the plant
GWAS conducted to date were not developed to explicitly test
evolutionary questions, so the sampling schemes and other
elements of experimental design may not be ideal for this purpose.
We will discuss the consequences of this problem in a later section.

Only one study, to date, has used a GWAS to investigate
selection within a population of plants. Josephs et al. (2015)
mapped loci associated with cis regulatory variation (cis-eQTLs) in
a single population of the outcrossing plant Capsella grandiflora.
This study found evidence of negative selection predominating on
cis-eQTLs, showing that these loci are at lower minor allele
frequencies than expected (Josephs et al., 2015). There was also a
negative relationship between minor allele frequency and the effect
size of cis-eQTLs, consistent with stabilizing selection acting on
gene expression levels (Josephs et al., 2015). Studies of molecular
traits, like gene expression, could bemore likely to detect the effects
of negative selection than GWAS on physical traits. For example,
cis-eQTLs may have relatively large effects on the expression of
individual genes, allowing them to be mapped, but smaller effects
on traits directly under selection, so that they are maintained at
detectable allele frequencies.

A few GWAS have tested for the negative correlation between
effect size and allele frequency at the range-wide level expected
under stabilizing selection. For example, the effect size and
frequency of GWAS SNPs associated with multiple maize traits
are negatively correlated (Brown et al., 2011; Peiffer et al., 2014;
Wallace et al., 2014). In addition, Stanton-Geddes et al. (2013)
found that observed correlations of effect size and frequency were
more negative than those generated from trials on permuted data
for height and lower root nodule count in Medicago truncatula,
consistent with stabilizing selection. However, beyond the studies
described earlier, evidence of negative selection and stabilizing
selection acting within populations and across species ranges is
limited.

There is so far little evidence of within-population balancing
selection onGWAS alleles in plants, in part because there have been
few GWAS conducted within plant populations. However, a
number ofGWAShave been conducted on range-wide samples and
have uncovered extensive evidence of between-population balanc-
ing selection, or local adaptation. An exemplary study showing
local adaptation usingGWAScomes fromBrachi et al. (2015),who
linked SNPs associated with glucosinolate composition in
Arabidopsis thaliana leaves to signatures of local adaptation (FST)
and fitness in field conditions, showing that strong divergent
selection maintains variation in glucosinolate composition across
European A. thaliana populations.

A number of additional studies have also demonstrated local
adaptation for GWAS candidates in plant populations. One
strategy commonly used involves investigating the distribution
of alleles associated with a trait of interest across the landscape.
An example of this approach comes from Filiault & Maloof
(2012), who identified an SNP strongly associated with shade
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avoidance and found that alternate alleles at this SNP often
occurred in neighboring populations. This pattern suggests that
selection on shade-response phenotypes is population-specific,
possibly due to differences in shade-environment between
populations. Additional examples of local adaptation inferred
from the distribution of alleles at GWAS SNPs in A. thaliana
include observations that the distributions of alleles associated
with flowering time and fitness follow a latitudinal cline (Li
et al., 2010), that an allele associated with lower saline
adaptation is more common in populations located farther
from the ocean (Baxter et al., 2010), and that genotypes of loci
affecting gene-body methylation in trans are correlated with
latitude (Dubin et al., 2015). An extension of these approaches
was used by Hancock et al. (2011), who explicitly plotted the
geographical distribution of SNPs associated with climate
variables. Going further, Fournier-Level et al. (2011) combined
GWAS results with the logic of a reciprocal transplant
experiment, observing that alleles associated with fitness in a
particular common garden were more likely to be found near
that common garden than genomic controls, consistent with
local adaptation. Collectively, these studies show that much of
the trait variation mapped through range-wide GWAS in plants
appears to be consistent with local adaptation.

Consistentwith a viewof prevalent local adaption inGWAS loci,
a number of studies have also detected population genetic
signatures of adaptation around GWAS loci. For example, SNPs
associated with flowering time, glucosinolate level and other
defense phenotypes in A. thaliana are enriched for FST outliers
(Horton et al., 2012; Brachi et al., 2015), as are some SNPs
associated with salt tolerance in African rice (Meyer et al., 2016).
Selective sweep signatures of various kinds are enriched near SNPs
associated with plant development, climate, and ionomic pheno-
types in A. thaliana (Hancock et al., 2011; Horton et al., 2012),
agronomic traits in Foxtail millet (Jia et al., 2013), life history traits
and height in Populus trichocarpa (Evans et al., 2014), environ-
mental variables in M. truncatula (Yoder et al., 2014), and salt
tolerance in rice (Meyer et al., 2016).Overall, there are a number of
examples of elevated signals of adaptation surroundingGWAS loci,
supporting the hypothesis that local adaptation shapes genetic
variation, although it is important to keep inmind that this pattern
is not always observed.

IV. Challenges of connecting GWAS to selection

The research program of finding loci associated with traits through
GWAS and testing for signatures on these loci seems relatively
straightforward, at least in principle. Can we now conclude that
local adaptation is largely responsible for maintaining plant
variation at the range-wide scale while negative selection likely
predominates within populations? We argue that although this
approach is clearly promising, there are a number of pitfalls that
need to be avoided. In addition to problems stemming from the
limited number of studies to date, a number of biases in the
ascertainment of GWAS SNPs and the types of samples used for
current GWAS color the conclusions we can currently make. We
outline some of these many challenges later.

1. Biases in the allele frequencies and effect sizes detected by
GWAS

The allele frequencies and effect sizes of GWAS loci are unlikely to
clearly reflect the underlying distributions of all of the alleles
controlling trait variation. Associationmapping is likely inherently
biased towards finding intermediate frequency alleles and alleles
with large effects (Sham&Purcell, 2014;Myles et al., 2009; Box 1)
although this pattern is not always straightforward. Additionally,
statistical biases such as the winner’s curse can cause overestimation
of the effect sizes of all alleles, but this overestimation will be worse
for rare alleles (Capen et al., 1971; Box 1). Thus, GWAS studies are
generally biased towards the identification of common alleles while
the rare alleles identified may have larger estimates of effect sizes,
even in the absence of selection. These biases can affect not only
direct comparisons of allele frequencies and effect sizes but also FST
distributions, and diversity patterns.

One way to get around ascertainment bias is to use permutations
to construct a null distribution of the allele frequency spectrum
under neutrality. Two studies have compared allele frequencies
found through GWAS to a null expectation generated with
permuted data (Stanton-Geddes et al., 2013; Josephs et al., 2015).
Permutation-based approaches have also been used to control for
winner’s curse’s ability to inflate the allele frequencies of rare alleles
when testing for a negative correlation between effect size and allele
frequency (Stanton-Geddes et al., 2013). Another useful approach
to evaluating the correlation between allele frequency and effect size
is subsampling the individuals used in a GWAS in a way to ensure
that the associations and effect sizes are estimated from equal
numbers of individuals with each genotype, regardless of the
population level allele frequency (i.e. downsampling until the
association mapping for common alleles is conducted on the same
sample size as it is for rare alleles) (Josephs et al., 2015).

Allele frequency biases can also affect FST, which has implica-
tions for using FST to evaluate evidence for local adaptation at
GWAS SNPs. The upper bound of FST is determined by allele
frequency and this bound is higher at moderate allele frequencies
(Jakobsson et al., 2013), so any skew towards intermediate allele
frequencies in GWAS SNPs may also increase FST. An alternative
may be methods that more explicitly test for increased spatial
differentiation in allele frequencies of GWAS SNPs relative to
appropriate genomic controls.

2. Controlling for genomic context

Many of the population genetic tests used to identify patterns of
selection are sensitive to genomic context. For example, FST
measures the extent of between-population divergence relative to
total variation across populations and, as a consequence, FST is
sensitive to forces that reduce total variation, like background
selection against neutral mutations linked to deleterious alleles
(Charlesworth, 1998; Cruickshank&Hahn, 2014). An alternative
may be using absolute measures of divergence that are not scaled by
total divergence and so are not sensitive to variation in background
selection (as suggested by Charlesworth, 1998). Tests for selective
sweeps may also be subject to similar types of biases, since variation
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Box 1 Statistical and genetic biases in mapping

Mapping the genetic basis of ecologically important traits, with either QTLmapping or GWAS, entails several statistical challenges. It is very important to
be aware of these before making general conclusions about the genetic architecture of traits (Rockman, 2012). In addition, these biases can complicate
subsequent tests of evolutionary and ecological hypotheses about the genetic loci detected, often with subtle but pervasive effects.

Common statistical biases in GWAS

Crucially, observed patterns of genetic architecture may be affected by numerous statistical biases. Given a certain effect size, SNPs with
intermediate allele frequencies will explain more phenotypic variance than SNPs with low allele frequencies, increasing the power of a GWAS to
detect intermediate-frequency alleles (Myles et al., 2009; Sham & Purcell, 2014). At the same time, GWAS will also have more power to detect
alleles with larger phenotypic effects. Increased power to detect common alleles and alleles with large effect sizes will cause an overestimation of
the average effect size and frequency of GWAS-associated alleles. In contrast to this, skewed distributions of traits when run through standard
parametric GWAS can lead to an excess of false positives from low-frequency alleles (Brachi et al., 2011), complicating intuitive conclusions about
how the allele frequencies of GWAS SNPs will reflect the underlying frequency of loci controlling variation at a trait. Strategies to disentangle power
and allele frequencies include subsampling GWAS populations to equalize allele frequencies (see Josephs et al., 2015) or explicit modeling that
accounts for frequency and power. Ultimately, any conclusions made about the genetic architecture of traits uncovered through GWAS should be
mindful of the statistical biases inherent in GWAS.

Winner’s curse

The phrase ‘winner’s curse’ has its roots in economics and reflects dynamics of competitive auction bidding scenarios, in which the winner of
the auction is often the individual that overestimated the value of the item, and hence all auction winners overpay (Capen et al., 1971).
Within the context of GWAS and genetic mapping, for studies of limited power, loci that are identified as statistically significant will
often have their effect sizes overestimated because the data that go into detecting a region or locus as significant in the first place are the
same as the data used for estimating effect sizes (G€oring et al., 2001; Z€ollner & Pritchard, 2007). As a consequence, with limited power or
sample size, one only detects a locus as significant if the effect size in the analyzed sample is greater than in the general population
(otherwise, one would not have detected it in the first place). One potentially pernicious consequence of the winner’s curse is that follow up
or validation studies may have too low a sample size and therefore insufficient power, and so fail to replicate initial associations (Ioannidis
et al., 2001). For testing evolutionary hypotheses that depend on effect sizes (e.g. distribution of effect sizes of beneficial or deleterious alleles,
relationships between effect size and allele frequency), distinguishing biological results from the winner’s curse represents a substantial
challenge.

Beavis effect

The Beavis effect is named after a series of papers by William Beavis focused on QTL mapping (Beavis, 1994, 1998). Beavis showed through a series
of simulations that limited sample size in QTL mapping populations had several adverse consequences on the inferences one could make. First,
limited sample sizes lead to a serious underestimation of the number of QTLs affecting a trait, and second, they lead to an overestimation of the
effect size of any single QTL. Beavis showed that the former issue is related to the heritability of the traits analyzed and the number of progeny
evaluated: as heritability of the traits and sample sizes increased, the power to detect QTLs increased. For example, the power to detect 10 QTLs in
a population of 500 F2 individuals was 0.57 for traits that had a heritability of 0.3, and 0.86 for traits with a heritability of 0.65; for 1000 F2
individuals, these power values were 0.85 and 0.99. As expected, with greater numbers of QTLs affecting a trait, power declines. Unlike winner’s
curse, the prominent bias in effect size estimation described by Beavis also has a biological, not statistical, explanation: with fewer individuals, and
hence fewer recombination events represented in the population, multiple loci that affect a trait will be mis-identified as a single QTL with larger
effect. Beavis (1994) described this as a problem of multicollinearity between the QTLs affecting a trait in small sample. Using larger sample sizes,
and hence more recombination events, will lead to fewer QTLs being co-inherited, allowing their individual effects of to be distinguished.

Noor effect

Noor et al. (2001) also used simulation to examine how the local genomic environment affected the detection, and effect size, of QTLs. They
showed convincingly that QTLs tend to be detected in regions of low recombination in the genome (e.g. near centromeres). In their simulations,
multiple QTLs in close proximity to centromeric or low recombination regions were often identified as single QTL with larger effects. They found
these results to be robust to the effect size of the QTL or the heritability of the trait (although they also found that higher heritability led to more
QTLs being detected). Noor et al. (2001) suggest that these results are an inevitable consequence of variation in gene density per centimorgan
across the genome.

Population structure

The presence of population structure in a GWAS panel can have important consequences, especially if trait variation covaries with structure.
Inadequately controlling for structure in this case will lead to a high number of false-positives (Atwell et al., 2010) because the distribution of many
neutral SNPs will match trait variation. Current plant GWAS often use mixed models that incorporate a matrix of relatedness between individuals to
control for false-positives due to structure (Thornsberry et al., 2001; Yu et al., 2006; Kang et al., 2010; Zhou & Stephens, 2012). However, it may
be impossible to detect true associations if structure and trait are entirely confounded, which can be an especially tough problem in predominantly
selfing species (Zhao et al., 2007).

Dealing with effect size biases

Several ways forward exist. For example, in human GWAS, it is now common to identify SNPs or loci as involved in phenotypes in one sample, and
then estimate their effects in a second sample (see Kraft et al., 2009 for an overview). The two-sample approach eliminates the double-testing
problem inherent in identifying and estimating effects sizes with the same data. Using two samples will often be a challenge in ecological and
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in linkage disequilibrium (LD) across the genome could both
increase GWAS power, by combining the signal of multiple causal
loci, and make it easier to detect selective sweeps. The net result of
combining the effects ofmultiple causal loci and the appearance of a
selective sweep signal could cause a spurious overlap between
GWAS significance and selective sweeps, so tests for an enrichment
of selective sweeps in a set of loci should be careful to control for LD
variation across the genome. In general, tests for an overlap between
various population genetic parameters andGWAS SNPs should be
mindful of confounders.

3. Does species choice limit conclusions made from GWAS?

Plant GWAS have generally been able to map loci that explain
significant amounts of trait variation (Atwell et al., 2010; Brachi
et al., 2011; Peiffer et al., 2014; Sasaki et al., 2015), especially
compared with GWAS in humans, where smaller effect sizes are
more commonly observed (Visscher et al., 2012). There are a few
possible, nonexclusive explanations for the relative success of plant
GWAS. First, plant GWAS can be conducted in controlled
environments and, often, with replicated lines, so less environ-
mental variation contributes to measurements of plant traits than
those for human GWAS. Second, plant GWAS have almost
exclusively been conducted on range-wide samples, where we
expect local adaptation to explain a large amount of standing
variation, while human GWAS may be mainly mapping variation
within populations that is likely to be at mutation–selection–drift
balance. Third, the focus of many human GWAS on disease risk
could also contribute to lower amounts of variation explained in
human GWAS, because the alleles that increase disease risk in
humans are likely to be difficult to detect with GWAS (Eyre-
Walker, 2010; Maher et al., 2012).

Although the genetic architecture of traits revealed by GWAS
clearly differs between plants and humans, there are also significant
differences between plant species in the types of variants uncovered
by GWAS. Many of these can be explained by mating system;
specifically, GWAS in selfers tend to find few large-effect alleles
explaining trait variationwhereasGWAS inoutcrossers tend to find
a larger number of alleles and these alleles have smaller effect sizes
(Tian et al., 2011; Huang et al., 2012). Mating system could affect
observed genetic architecture in multiple ways. First, there may be

stronger selection against large-effect flowering-time alleles in
outcrossers than selfers, because outcrossers with aberrant flowering
times are less likely to be able to mate. This prediction is consistent
with observations that the majority of the genetic variation for
flowering time in the selfing A. thaliana seems to be controlled by a
relatively small number of loci with large effects (Sasaki et al., 2015)
but bymany small-effect loci inmaize, an outcrosser (Buckler et al.,
2009). Second, mating system may affect the types of genetic
variation present within populations. Specifically, theory predicts
that stabilizing selection will maintain less within-population
genetic variation in selfers than outcrossers (Charlesworth &
Charlesworth, 1995; Lande&Porcher, 2015). Third, LDgenerally
decays more slowly in selfers than outcrossers, so GWAS in selfers
may be more likely to uncover large-effect combinations of small-
effect alleles (Huang & Han, 2014). Finally, selfing species
generally have stronger population structure, reducing power to
detect associations for traits that have values correlated with
structure (Atwell et al., 2010; Platt et al., 2010; Box 1).

However, it is important to note that many of the current
observations made about genetic architecture uncovered through
GWAS in outcrossing plants comes frommaize, specificallyGWAS
conducted on theNested AssociationMapping panel (NAM). The
NAM is made up of the offspring of controlled crosses between 25
diverse maize inbred lines and the same reference line (Yu et al.,
2008). Essentially, this means that the population is made up of 25
distinct subpopulations of recombinant inbred lines that share a
common parent. The resulting lines allow well-powered mapping,
because even variants with low population-level frequency are
relatively well-replicated within the subpopulations, although
variants at frequencies below 1/25 will not be well-represented. For
traits that have been mapped in both the NAM and natural
populations, such as height, the NAM has found alleles of smaller
effect due to higher power (Peiffer et al., 2014). The increased
power seen in the NAM makes it difficult to disentangle GWAS
sampling strategy frommating system as long as GWAS studies on
outcrossing species focus mainly on the NAM inmaize. Additional
GWAS conducted in outcrossing plant species will be needed to
further investigate the role of mating system in shaping the genetic
architecture of quantitative traits and, ultimately, whether the
selective forcesmaintaining trait variation differ between selfers and
outcrossers.

evolutionary contexts, and as a consequence alternatives are needed. Several alternatives can be pursued. For example, rather than identifying
single SNPs at a time, it may be more profitable to model the contribution of all SNPs, simultaneously to the phenotype (Visscher et al., 2010; Yang
et al., 2010). These analyses are not subject to the winner’s curse, and often explain substantially more variation in phenotypic traits than SNP at a
time GWAS style analyses.

The most straightforward approach to dealing with effect size biases is recognize the consequences of these artifacts, plan accordingly, and to alter
interpretations and subsequent work in light of them (Albert et al., 2008; Slate, 2013). While some of the effects Beavis analyzed can be addressed
through analytical tools (QTL mapping approaches, statistical analysis), the most fundamental issue, as originally emphasized by Beavis, is the
experimental design: the number of recombinant progeny that are in a given mapping experiment, and experimental conditions used to measure
the traits. Once an experiment is done, caution about the number and distribution of QTL effect sizes is in order, especially if the goal is to compare
to theoretical predictions generated using different models.

Box 1 (continued)
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4. Are crop species representative?

Many of the plant GWAS conducted to date use crop systems such
as maize (Buckler et al., 2009; Brown et al., 2011; Peiffer et al.,
2014; Wallace et al., 2014), rice (Zhao et al., 2011; Huang et al.,
2012; Chen et al., 2014; Begum et al., 2015; Meyer et al., 2016;
Yano et al., 2016), sorghum (Morris et al., 2013; Lasky et al.,
2015), and foxtail millet (Jia et al., 2013). There are some clear
benefits of investigating variation in crops while trying to address
questions about the maintenance of genetic variation. First, due to
breeders’ interest in incorporating natural genetic variation, crop
GWAS tend to be conducted in large, diverse panels, providing lots
of genetic variation to explore. Second, many of the selective agents
that have shaped genetic diversity in crop plants are known,
providing clear hypotheses to test. For example, maize has many
fewer lateral branches than its wild progenitor, teosinte, and this has
been linked to selection at a number of loci (Doebley et al., 1997;
Clark et al., 2004). Finally, our intuition is that the selection
involved in domestication and breeding is quite strong, making it
detectable, but at the same time domestication often involves
adaptation at many loci (Morrell et al., 2012; Meyer & Purug-
ganan, 2013), making these systems useful for investigating
adaptation in quantitative traits.

If the selective forces acting on trait variation in crops differ from
those acting on variation in natural populations, conclusions about
the forces maintaining variation made only in crops will be
misleading. The specific traits chosen for investigation are
important here. Adaptive traits in crops can be divided up into
those that were selected for during domestication (domestication
traits), and those that were selected for during breeding and vary
across the range of the domesticated species (diversification traits)
(Meyer & Purugganan, 2013). The timescales and strength of
selection on domestication and diversification traits likely differ
(Meyer & Purugganan, 2013). Diversification traits can include
analogs to those that might vary in wild populations, such as
photoperiod sensitivity, but will also include characters that were
consciously selected for by humans and may not have analogous
natural variation, such as the popping phenotype in maize (Meyer
& Purugganan, 2013). Because most GWAS panels focus on
domesticated lines, diversification traits are the ones most likely to
be investigated during plantGWAS, although there is evidence that
when variation in domestication-related traits does persist in
domesticated species, this variation is mainly due to small-effect
alleles that escaped selection during domestication (Xue et al.,
2016). It is unclear if conclusions made about variation in
domestication traits or those diversification traits without analogs
in natural populations will be applicable to questions about what
maintains trait variation in nature.

The process of domestication could also have important
consequences for genomic variation. For example, domestication
often involves complex demographic changes that could alter
population structure (Morrell et al., 2012) or other aspects of
genomic variation such as allele frequencies and patterns of linkage
disequilibrium, affecting association mapping efficacy
(Lohmueller, 2014). In addition, there is evidence that domesti-
cated species have more deleterious mutations than their wild

progenitors, potentially due to the repeated bottlenecks that occur
during domestication (Renaut & Rieseberg, 2015), which will
shape the types of variation present within domesticated species. In
sum, while investigations of selection in crop species have been and
continue to be useful, there are also many factors that suggest that
the evolutionary forces maintaining variation in crop plants likely
differ from those acting in wild populations.

5. The samples used for GWAS matter

The choice of what populations to include in GWAS matters for
evolutionary conclusions made from these GWAS. Most plant
GWAS have been conducted on range-wide samples that
sometimes even include multiple closely-related species (for e.g.
Huang et al., 2012; Chen et al., 2014). The lack of within-
population plant GWAS is likely due to both the field’s history
of interest in crop breeding and local adaptation and a focus on
selfing species. Selfing species are especially tractable for GWAS
because they allow researchers to develop inbred lines that can be
sequenced once but phenotyped multiple times, allowing for
replication and the evaluation of multiple traits. However, the
focus on selfing species limits our understanding of within-
population processes because these species do not form large
interbreeding populations.

There are a couple of sampling strategies that can be used to
examine the maintenance of variation within populations without
the need to generate expensive sequence data from a single
population that can be used only once. First, denser sampling of
selfing lines in a limited geographical region such as panels of
A. thaliana collected from Sweden (Long et al., 2013), has the
potential to uncover variation maintained at smaller geographic
scales, more closely mimicking the types of dynamics seen within
populations, while allowing researchers to take advantage of inbred
lines that can be used in multiple experiments. Second, crossing
schemes that create inbred lines fromanoutbred population sample
will be useful in species that are primarily outcrossing but also self-
compatible, such as M. guttatus (Wu et al., 2008). However,
outcrossing species can maintain many deleterious recessive alleles
and care should be taken to consider the effects that the exposure of
deleterious recessive alleles in selfed lines will have on conclusions
made from these studies.

In addition, choices made during species-wide sampling efforts
may also affect conclusions made about local adaptation. For
example, relatively sparse samples conducted on a continental or
worldwide scale may miss regional patterns of local adaptation
(Anderson et al., 2015). Overall, it is clear that, as in many
experiments, the choice of what populations, and at what scale, to
sample in aGWASwill have important implications for results and
these choices should be thought through carefully.

6. Allelic heterogeneity

GWAS analyses typically test for independent associations between
phenotype and one of two genotypes at a SNP. Allelic heterogene-
ity, the presence of more than two alleles with distinct phenotypic
effects at a locus, will make this locus difficult to detect using
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GWAS. We will describe an example of this phenomenon from
Yano et al. (2016) to illustrate the general problem. Yano et al.
(2016) conducted a GWAS for days to heading (flowering time) in
a population of japonica rice (Oryza sativa) varieties and found that
one of the strongest association peaks was located c. 1 megabase
(Mb) from Hd1, a gene previously shown to be important for
heading date variation. Their sample had 11 haplotypes present at
Hd1, some of which contained previously-reported null and
intermediate alleles for Hd1 function. The presence of multiple
haplotypes and causal alleles at Hd1 meant that tests for the
independent effects of individual SNPs inHd1 on days to heading
were not significant. However, a region with high LD located c. 1
Mb from the Hd1 gene effectively tagged functional variation in
Hd1, creating the signal of an association in this location (Yano
et al., 2016).

It seems clear that understanding the extent of allelic hetero-
geneity will be important for understanding our ability to map
causal loci usingGWAS but allelic heterogenity is difficult to detect
using GWAS data alone. The use of a common reference parent in
the NAM makes it straightforward to detect series of multiple
alleles affecting a trait by looking for parental alleles that have
opposite effects relative to the reference parent, and allelic
heterogeneity has been observed for a number of traits in QTL
detected in mapping studies using the NAM (Buckler et al., 2009;
Kump et al., 2011; Cook et al., 2012). In addition, haplotype-
based GWAS for eQTLs in Drosophila melanogaster have shown
that allelic heterogeneity is common (King et al., 2014). If genetic
variation at a certain trait is more likely to involve allelic
heterogeneity than for other traits, this will lead to an underestimate
of effect sizes at heterogeneous loci (Thornton et al., 2013), having
important consequences for conclusions made about the selective
pressures acting on these loci. Overall, studies attempting to detect
selection on GWAS loci should be mindful of the potential effects
of allelic heterogeneity.

7. Detecting polygenic adaptation

While plant GWAS have been successful at identifying local
adaptation involving changes at a few loci, efforts for identifying
polygenic adaptation in plantGWASSNPs have been limited.One
approach used successfully in humans tests for covariance in the
direction of allelic effects across populations (Turchin et al., 2012;
Berg & Coop, 2014; Robinson et al., 2015), as expected if local
adaptation occurs polygenically (Le Corre & Kremer, 2012).
Specifically, the allele frequencies and effect sizes of GWAS hits are
summarized by constructing predicted phenotypes for populations
in a separate genotyping panel and an excess of differentiation in the
predicted phenotypes is indicative of local adaptation (Berg &
Coop, 2014; Robinson et al., 2015). In addition, a new method
that detects very recent shifts in allele frequency due to directional
selection could be useful for identifying recent local adaptation by
testing for coordinated allele frequency shifts in GWAS SNPs
(Field et al., 2016). Applying these new approaches for detecting
polygenic adaptation will likely need additional genomic sequenc-
ing beyond what is normally conducted for plant GWAS, but
should already be feasible in A. thaliana and many crop species.

However, applyingmethods developed for humans to plantGWAS
will require grappling with how population structure in the plant
GWAS sampling populations will affect signatures of polygenic
adaptation (Berg & Coop, 2014).

V. Potential ways forward

Although GWAS have, to date, provided insight into the
maintenance of variation in plant species, their potential is still
relatively untapped and many biases limit the conclusions we can
make. In this reviewwehave outlined theoretical predictions for the
types of variation we expect to be maintained under different types
of selection, described our current understanding of the mainte-
nance of variation based on GWAS, and outlined the challenges
that remain and highlighted some solutions to these problems.
Below we suggest a few additional ways forward that appear
promising.

There are still many limits to using GWAS to address the
maintenance of variation within populations. In particular, the
GWAS conducted to date have limited power to detect rare alleles.
Fully understanding the role of mutation–selection balance in
maintaining variation within species will require comprehensive
surveys of rare variants. Although increasing sample sizes is a clear
way to improve power to detect associations with rare alleles, there
will always be a lower bound in the allele frequency detectable by
GWAS. A few alternative approaches to detecting the presence of
rare QTLs and their properties have been developed for mapping
disease traits in humans and could be applied to plants. One
approach uses targeted sequencing at a few candidate genes in a very
large sample to detect associations between rare alleles and a disease
or to test for an enrichment of rare variants in the candidate genes.
However, these experiments have had mixed success in detecting
associations (Rivas et al., 2011; Hunt et al., 2013; Purcell et al.,
2014), and failures to see a significant role of rare deleterious
variants may occur because either rare variants do not contribute to
the disease in question or because these studies have missed causal
rare variants in noncandidate genes and noncoding regions.
Additional approaches to detecting rare variants involved in disease
are discussed in Zuk et al. (2014) and S. Lee et al. (2014).

One way to cope with low power to detect rare variants is to
combine information from multiple traits. A number of rare
variant-based approaches that take advantage of information
gained from looking at a large number of traits have been applied
to human gene expression. Zeng et al. (2015) detected individual
human cell lines with aberrant gene expression and showed that
aberrant expression was associated with an excess of rare variants in
and near genes, consistent with the action of negative selection.
Similarly, Zhao et al. (2016) found an excess of rare variants in
promoters in individuals with extremely high or low expression
levels, consistent with the hypothesis that rare variants under
negative selection affect gene expression. Li et al. (2014) identified
genes with putative rare eQTLs by looking for genes with eQTLs
that had effects in a single family but lacked common, large effect
cis-eQTLs in a population level sample and also had rare potentially
functional variants near the transcription start site. Genes with rare
cis-eQTLs had lower dN/dS than genes with common cis-eQTLs,
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suggesting that selection has reduced the allele frequencies of the cis-
eQTLs affecting evolutionarily constrained genes (Li et al., 2014).
All of these approaches could be attempted in plants and in traits
other than gene expression. In particular, the approach of Li et al.
(2014) could be adapted to use QTLs identified in controlled
crosses that do not segregate in larger population samples as
candidate rare QTLs.

By contrast, our ability to detect within-population balancing
selection acting on GWAS loci is limited not by power to detect
associations but by both the availability of data from within-
populationGWAS and a restricted ability to detect the signature of
this type of balancing selection in sequence data. There is certainly
room for the development of improved model-based approaches.
In addition, explicit examination of allele frequency change over
time (e.g. Bergland et al., 2014) should enhance the power to detect
and quantify the role of temporally-variable selection in maintain-
ing variation in the same way that investigations of spatial variation
in frequencies of trait-associated SNPs have been so useful in
identifying local adaptation.

It is worth noting that it may not be necessary to directly
map the SNPs affecting traits at all in order to make inferences
about genetic architecture. Some approaches skip the step of
identifying SNPs associated with traits and, instead, estimate
the amount of genetic variance contributed by all or a subset of
SNPs (Yang et al., 2011; Gusev et al., 2014). The benefit of
estimating variance directly is that it allows inferences to be
made from the small-effect SNPs that cannot be independently
detected due to low power in GWAS (Visscher et al., 2010).
Estimates of the genetic variation explained by genotype state at
all loci have been successful at identifying much of the genetic
variation observed in human height and body mass index and
showing that, for height, rare alleles explain more variation than
common alleles, consistent with the action of selection (Yang
et al., 2010, 2015). These types of approaches are already being
used in plants to evaluate the functional importance of various
types of annotations in maize (Rodgers-Melnick et al., 2016),
the factors contributing to different types of methylation
variation in A. thaliana (Dubin et al., 2015), and the number of
loci involved in trait variation in sorghum (Lasky et al., 2015),
but could be used to investigate allele frequency biases or other
population genetic parameters within plants.

In conclusion,GWAS in plants have uncovered a large sample of
loci that contribute to quantitative genetic variation within species
and allowed us to begin to evaluate the role of negative selection
contributing to within-population genetic variation and of local
adaptation in contributing to species-wide genetic variation.
However, ascertainment biases and power strongly determine the
variants revealed by GWAS and interpretations made from these
variants still require great care. There may not be a one-size-fits-all
solution or clear roadmap to answering questions about the
maintenance of variation usingGWAS results, and instead, the best
approaches may be system- and question-specific. Future work to
both expand the scope of GWAS conducted in plants and to
develop methods that carefully test for the effects of various
evolutionary scenarios will be needed to explain the evolutionary
forces maintaining variation within plant species.
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