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Trade-offs can exist within and across environments, and constrain evolutionary trajectories. To examine the effects of competi-

tion and resource availability on trade-offs, we grew individuals of recombinant inbred lines of Impatiens capensis in a factorial

combination of five densities with two light environments (full light and neutral shade) and used a Bayesian logistic growth

analysis to estimate intrinsic growth rates. To estimate across-environment constraints, we developed a variance decomposition

approach to principal components analysis, which accounted for sample size, model-fitting, and within-RIL variation prior to

eigenanalysis. We detected negative across-environment genetic covariances in intrinsic growth rates, although only under full-

light. To evaluate the potential importance of these covariances, we surveyed natural populations of I. capensis to measure the

frequency of different density environments across space and time. We combined our empirical estimates of across-environment

genetic variance–covariance matrices and frequency of selective environments with hypothetical (yet realistic) selection gradients

to project evolutionary responses in multiple density environments. Selection in common environments can lead to correlated

responses to selection in rare environments that oppose and counteract direct selection in those rare environments. Our re-

sults highlight the importance of considering both the frequency of selective environments and the across-environment genetic

covariances in traits simultaneously.
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Understanding the evolution of correlated traits is fundamental

for the study of evolutionary topics such as life-history the-

ory (Roff 1992; Roff and Fairbairn 2007), costs of adaptation

(Futuyma and Moreno 1988; Brodie and Brodie 1999; MacLean

et al. 2004), the evolution of plant defense strategies and mating

systems (Fineblum and Rausher 1995; Stinchcombe and Rausher

2001; Sargent et al. 2007), sexual selection (e.g., Kilpimaa

et al. 2004), and the evolution of aging and senescence (e.g.,

Bonduriansky and Brassil 2005). In the quantitative genetic frame-

work, trait correlations are typically considered in the context of

the genetic variance–covariance matrix (G), in which the off-

diagonals represent genetic covariances between traits, arising

because of either the pleiotropic effects of individual loci on mul-

tiple traits or linkage disequilibrium between loci (Falconer and

MacKay 1996; Lynch and Walsh 1998; Gardner and Latta 2007).

Genetic covariances between traits will lead to a correlated re-

sponse to selection, which may constrain trajectories of adaptive

evolution (Lande 1979; Via and Lande 1985, 1987). Combining

estimates of G with estimates of natural selection on those traits

(β or selection gradients; see Kingsolver et al. 2001a; Stinchcombe

et al. 2002; Hereford et al. 2004) allows not only quantitative pre-

diction of the response to selection of the traits in question, but

also of whether the genetic covariances affect the rate of adapta-

tion (see e.g., Hansen and Houle 2008; Agrawal and Stinchcombe

2009; Kirkpatrick 2009).

Genetic correlations can exist across environments as well

(Falconer 1952). If there is a strong, positive genetic covariance

between the same trait in multiple environments (suggesting that

the same loci contribute to the trait in each environment) and natu-

ral selection is acting in opposite directions on the trait, the across-

environment genetic covariance can act as a constraint (Via and

Lande 1985, 1987). For this reason, the role of across-environment

genetic covariances has been investigated heavily in theoretical

and empirical studies of phenotypic plasticity (e.g., Fry 1990,

1992; Scheiner et al. 1991; Gomulkiewicz and Kirkpatrick 1992;

Scheiner 1993; Andersson and Shaw 1994; Pigliucci et al. 1995;

Via et al. 1995; Pigliucci 1996; Grill et al. 1997; Donohue and

Schmitt 1999; Donohue et al. 2000b; Czesak et al. 2006). Like-

wise, the appropriate analytical methods for estimating across-

environment genetic correlations and testing their statistical sig-

nificance has been intensely investigated (e.g., Rausher 1984; Via

1984; Shaw 1987; Fry 1992; Windig 1997; Astles et al. 2006).

Despite the considerable attention paid to across-environment ge-

netic correlations, however, progress in understanding their role

as evolutionary constraints has been hindered by three factors:

(1) We have comparatively few estimates of across-environment

genetic correlations that span multiple environments, rather than

just a few, (2) estimates of across-environment genetic corre-

lations are rarely paired with data on the natural frequency of

those environments, and (3) the potential consequences of across-

environment genetic variances and covariances are rarely evalu-

ated quantitatively, rather than qualitatively.

The need to estimate across-environment genetic correlations

across more than two or three environments stems from the fact

that most organisms inhabit a range of environments. For exam-

ple, many plant species inhabit environments that exhibit sub-

stantial (and frequently, continuous) variation in intraspecific and

interspecific density, light availability, soil moisture and nutrient

availability, in addition to other abiotic and biotic variables. Es-

timating across-environment genetic correlations that encompass

this range of environments will provide a more comprehensive

estimate of the genetic architecture of species inhabiting multi-

ple environments. These estimates, however, will be most useful

when paired with data on the naturally occurring frequency of

the environments. Theoretical work has shown that the evolution

of phenotypic plasticity can depend critically on the frequency

of environments, but usually focusing on the effects of selec-

tion within those environments (i.e., the frequency of selective

environments: Via and Lande 1985, 1987; Gomulkiewicz and

Kirkpatrick 1992); empirically measuring the natural frequency

of environments is quite challenging, and examples are rare (but

see Weis and Gorman 1990; Kingsolver et al. 2001b; Arnold and

Peterson 2002; Huber et al. 2004). The relevance of the frequency

of environments to across-environment genetic correlations is

clear: if a given environment is rare, across-environment genetic

correlations involving it might be less likely to be important in

constraining (or facilitating) the evolution of traits expressed in

those environments.

A key element to assessing the role of both across-

environment genetic correlations and the frequency of selective

environments to the evolution of quantitative traits is dispersal. For

example, if an environment is common in nature but organisms

rarely disperse there, that environment is expected to contribute

relatively little to the overall evolutionary trajectory of the traits

in question. For organisms that experience coarse-grained envi-

ronments (sensu Levins 1968), simple predictions from theory

suggest that limited dispersal should promote local adaptation or

specialization of ecotypes (e.g., Via and Lande 1985), whereas

greater dispersal has been implicated in the evolution of plasticity

(e.g., Via and Lande 1985; Gomulkiewicz and Kirkpatrick 1992;

Sultan and Spencer 2002). Empirically, one approach to evaluat-

ing the role of dispersal in the context of the frequency of selective

environments would be to define environments or patches based

on the presence of the organism (implying that they or their an-

cestors dispersed there) and measure gene flow between extant

habitat patches. Molecular and allozyme marker surveys typi-

cally reveal extensive gene flow between natural populations (see

e.g., Hamrick et al. 1995). Moreover, it is important to note that

genetic differentiation and local adaptation, dispersal, and pheno-

typic plasticity are not mutually exclusive evolutionary forces and
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outcomes: populations can show differentiation and local adap-

tation for traits and their plasticities (Dudley and Schmitt 1995;

Donohue et al. 2000a) even in the face of high levels of gene flow

(von Wettberg et al. 2008), provided that selection is strong.

The growth response of plants to variable density and light

availability represents a promising suite of traits to estimate

across-environment genetic correlations and the frequency of en-

vironments for several reasons. First, many plant species are com-

monly found across a range of light environments, ranging from

full sun to shady habitats. As photosynthetically active radiation

is necessary for carbon fixation and plant growth, changes in the

light environment have the potential to affect a suite of growth-

related traits simultaneously (e.g., Schmitt et al. 1986; Schmitt

1993; Dorn et al. 2000). Second, intraspecific density frequently

varies widely within and across plant populations (Harper 1977;

Linhart and Grant 1996; Donohue et al. 2000a,b). The presence of

neighboring plants alters the ratio of R to FR light (600–690 nm

and 690–800 nm, respectively) due to the absorption of red light

by chlorophyll (Holmes and Smith 1977). Changes in the R:FR

ratio of light transmitted through foliage or reflected from neigh-

bors initiate a suite of phytochrome-mediated plastic responses in

plants known as the “shade-avoidance syndrome,” including stem

and internode elongation, decreased branch production, and ac-

celerated reproduction (Smith 1982; Ballaré et al. 1990; Schmitt

and Wulff 1993; Ballaré 1999; Weinig 2000a; Schmitt et al. 2003).

As such, changes in light availability have the capacity to affect

biomass growth, whereas changes in density (which alter the R:FR

ratio) have the capacity to affect elongation growth through the

shade-avoidance pathway. Finally, intraspecific density of plants

is a trait that can be readily scored in multiple habitats in the field

in a given year and across several years, providing estimates of

the frequency of different density environments.

One advantage to studying genetic correlations involved in

shade-avoidance responses is that the fitness benefits and costs

of shade avoidance have been well investigated in a variety of

plant species, providing rich details on its adaptive value (Dudley

and Schmitt 1995, 1996; Donohue and Schmitt 1999; Dorn et al.

2000; Donohue et al. 2000a,b, 2001; Weinig 2000a,b; Huber et al.

2004; von Wettberg and Schmitt 2005). The plastic response to

density is adaptive (i.e., elongation is favored over suppression

in high density, and vice versa under lower density, Dudley and

Schmitt 1996), and may evolve independently several times within

a species (von Wettberg et al. 2008). However, the elongation

response incurs costs (Maliakal et al. 1999; Weinig and Delph

2001; Huber et al. 2004) and can be subject to heterogeneous

selection depending on ecological context (Weinig 2000b; Huber

et al. 2004; McGoey and Stinchcombe 2009).

Here, we examine across-environment genetic correlations in

shoot elongation rate across a range of density and light environ-

ments, and pair that with field surveys of intraspecific density in

multiple years in two habitats that differ in light availability. Us-

ing a greenhouse experiment, we examined shoot elongation in 49

recombinant inbred lines of Impatiens capensis grown in five den-

sity environments (spanning more than an order of magnitude of

variation in intraspecific density) in both full sun and neutral shade

conditions. We could thus examine genetic variation in response

to different competitive environments under high and low light

resource availability. We used Bayesian curve fitting to model

individual intrinsic growth rates. To examine across-environment

genetic correlations, we developed a mixed-model principal com-

ponents analysis (PCA) approach that accounts for within-RIL

and model fitting variation to estimate across-environment ge-

netic covariances. In particular, we sought to answer the fol-

lowing questions: (1) What is the genetic correlation in intrinsic

growth rates across density environments in each of the light

treatments? (2) How frequently do these density environments

occur in nature? (3) Do correlations that would likely lead to

constraints in the evolution of intrinsic growth rate involve rare

or common environments?, and (4) How do across-environment

correlations and the frequency of selective environments inter-

act to determine the evolutionary response of intrinsic growth

rates?

Materials and Methods
STUDY SPECIES AND QUANTITATIVE

GENETIC DESIGN

Jewelweed (I. capensis Meerb. (Balsaminaceae)) is a North

American herbaceous annual, commonly found in moist forest

understories and open wetlands. Impatiens capensis has a mixed

mating system, producing exclusively self-fertilizing cleistoga-

mous flowers, and chasmogamous flowers that outcross 30–70%

of the time (Waller and Knight 1989). Furthermore, the produc-

tion of cleistogamous and chasmogamous flowers is frequently

environmentally and density dependent, with as few as 1–2% of

individuals producing chasmogamous flowers in some situations

(Schmitt et al. 1987). Natural populations of I. capensis experi-

ence tremendous variation in the amount of light and intraspecific

density, with woodland populations typically occurring in lower

light, lower density environments, whereas open populations are

characterized by more light and higher densities. In early spring,

plants typically germinate and emerge in high light conditions

prior to overhead canopy closure (if one exists). In both open and

woodland populations, Impatiens frequently forms dense mono-

cultures where it is the dominant understory plant (Winsor 1983).

Seed dispersal in Impatiens is autoballistic, with the majority

of observed seeds landing close to the parental plant (Schmitt

et al. 1985). However, similar to many other plants (Hamrick

et al. 1995), genetic data indicate longer distance dispersal in

I. capensis (von Wettberg et al. 2008), which is likely due to
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secondary transport of seeds by water and flooding (E. von Wet-

tberg, unpubl. data).

Past studies have shown that populations inhabiting “sun”

and “woods” sites exhibit genetic differentiation and local adap-

tation to differing light and density conditions (Schmitt 1993;

Dudley and Schmitt 1995; Donohue et al. 2000a,b; von Wettberg

and Schmitt 2005; von Wettberg et al. 2008). To study the quanti-

tative genetics of growth curves, we used 49 recombinant inbred

lines (RILs, hereafter) that had been developed from a cross be-

tween a single inbred line from a woods population and another

inbred line from a sun population; these populations have been

shown to exhibit quantitative genetic differentiation and local

adaptation (Dudley and Schmitt 1996; Donohue et al. 2000a,b).

The F1 of this cross was allowed to self-fertilize, and approxi-

mately 100 of the F2s were advanced by single-seed descent for

six generations to produce the RILs (see Heschel et al. 2004;

Stinchcombe and Schmitt 2006 for more details).

The genetic structure of these lines is likely similar to many

natural populations of I. capensis in which rare outcrossing events

are followed by several generations of self-fertilization. In particu-

lar, von Wettberg et al. (2008) showed that gene flow between sun

and woods populations (including the source populations for our

parental lines), as estimated from presumably neutral markers, is

on the order of one migrant per generation. Outcrossing events, ei-

ther in the form of pollen movement between populations, or seed

dispersal followed by outcrossing, will produce F1 individuals.

Selfing of these F1s—for example from the exclusively selfing

cleistogamous flowers—will produce recombinant F2 individu-

als. Any further selfing will likely produce plants with a genetic

structure akin to RILs, especially if density and environmental

effects inhibit the production of chasmogamous flowers capable

of outcrossing (Schmitt et al. 1987). The use of RILs also facili-

tates growing nearly genetically identical individuals in multiple

environments, facilitating the estimation of across-environment

genetic covariances.

GREENHOUSE EXPERIMENTAL DESIGN

We grew the 49 RILs in a factorial combination of density and

light treatments. Prior to the experiment, seeds were gathered and

cold-stratified at 4◦C for approximately 4 months in 96-well plates

filled with distilled water. After stratification, seeds were planted

in late April into cone-tainers (Stuewe and Sons, Inc., Corvallis,

OR) that had been filled with Metromix 360 (Scotts-Sierra

Horticultural, Marysville, OH). Cone-tainers were randomly dis-

tributed on a bench in the Brown University greenhouse, and for

the first week were kept consistently moist with top-watering to

promote germination and seedling establishment; throughout the

experiment, we did not use any supplemental lighting. After ap-

proximately one week of growth, replicates of each line were

moved into experimental treatments.

The experimental design crossed a light treatment (ambient

greenhouse light and neutral shade cloth) with manipulations of

intraspecific density. We used five greenhouse benches (blocks),

in which half of each bench was covered with neutral shade cloth

to reduce the light reaching plants in a split-plot design. Because

we wished to manipulate light resource availability independent

of the R:FR cue, the shade cloth did not alter the R:FR ratio of

light, but reduced photosynthetically active radiance (PAR) by

78% (mean 173 μmol m−2s−1 vs. 778 μmol m−2s−1 during mid-

day; see Heschel et al. 2004). These light level reductions are

within of the natural range of light levels in sun and shaded sites

(Heschel and Hausmann 2001), and are thus ecologically relevant.

By altering the spacing of cone-tainers in plastic racks, we cre-

ated five intraspecific density treatments: 64, 144, 289, 625, and

1225 pl/m2. These densities span the natural range of densities

found in sun and woods sites (see below). To prevent lateral, inci-

dent light from reaching plants, and plants from different density

or light treatments from interacting with each other, each den-

sity treatment was surrounded with an aluminum foil; as plants

grew, we added to the aluminum foil wrappings as needed. The

total starting sample size was 2450 plants (=5 benches × 2 light

treatments/bench × 5 density/light treatment × 49 individuals/

density treatment). The position of individual replicates within

each density array was randomly assigned.

To ensure equal moisture and nutrient levels of plants in

different light-density treatment combinations, once plants were

in experimental treatments, we bottom-watered them daily us-

ing Ebb-Flo Flood irrigation. Plants were fertilized biweekly

with Peters 20-20-20 (N-P-K, Scotts-Sierra Horticultural Prod-

ucts, Marysville, OH).

To characterize genetic variation in growth trajectories under

the 10 light and density treatment combinations, we measured the

height of every plant to the tip of the apical meristem six times

over the growing season (18, 26, 33, 39, 47, 57 days). All plants

were measured to the nearest millimeter by two investigators (JRS

and MSH), and data were entered directly into a handheld PDA

(see below). At 57 days, we harvested plants and recorded a final

height estimate. The duration of our experiment approximates a

short growing season for I. capensis, which can occur because of

unpredictable early season droughts (Heschel and Riginos 2005).

Survivorship over the course the experiment was high (96.8%).

FIELD SURVEYS OF INTRASPECIFIC DENSITY

To estimate the frequency of the density environments used in this

experiment, we surveyed the density of Impatiens seedlings at

the clearing and woodland sites described by Dudley and Schmitt

(1996), and Donohue et al. (2000a,b, 2001) in locations outside

of their experimental plots. We estimated density by counting

the number of emerging Impatiens seedlings in a series of plots

located on transects in each site. Transect lines were separated
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by 10 m within sites, and sampling points were located every 5 m

on transects. At each sampling point, we counted the number of

Impatiens in four 0.5 m × 0.5 m quadrants, taking the transect

point as the origin, and then summed these counts to estimate

Impatiens/m2. We estimated density in the clearing site on

four transect lines, for a total of 15 estimates of Impatiens/m2,

and in the woodland site on five transect lines, for a total of

25 estimates of Impatiens/m2. These surveys took place yearly

between 1996 and 2002, in the early spring after emergence and

before self-thinning.

DATA ANALYSIS

Data proofing
Because vertical growth in I. capensis is unidirectional (i.e., living

plants do not shrink), instances in which successive height mea-

surements show a decline indicate either measurement impreci-

sion or errors in data entry. We identified 57 such cases (≈2.3%

of plants, ≈ 0.4% of height measurements); 39 of these were out-

right entry errors and converted to missing data, whereas 18 were

left unaltered because the apparent magnitude of shrinkage was

small (mean ± SE = 0.38 ± .07 cm).

Modeling impatiens growth
We modeled Impatiens vertical growth curves for individuals

using the familiar logistic growth equation, dh/dt = rh(1 − h/K),

where dh/dt is the rate of height increase, r is the intrinsic rate

of growth, K is the asymptote of height growth, and h is the

initial height. We chose the logistic equation for three reasons:

(1) In some of our higher densities, we noticed a slowed rate

of growth of individual plants, suggesting that they had or were

nearing an asymptote, (2) for plants that had not yet leveled off

in growth, the logistic equation has the advantage of showing

exponential growth in its first phase (i.e., before height reaches

half of its eventual asymptote), and (3) the parameters are biolog-

ically interpretable—K indicates the asymptotic height of a plant,

whereas r describes the intrinsic rate of increase of plants. The

logistic equation has been widely used in models of plant growth

(e.g., Abrami 1972; Weiner and Thomas 1986; Tsoularis 2001).

Using the logistic equation thus allows us to fit a single growth

model to all of our data and account for the fact that growth for

some plants had started to level off, whereas others had not. How-

ever, because fitted asymptote values were frequently beyond the

range of observed data (especially in the three lowest density

treatments), we focus all of analyses on the fitted values of the

maximum rate of height increase (r).

The height of individual i of RIL g at time t, hg(i)(t), was

modeled as a logistic curve with measurement error, using the

integral form of the logistic equation

hg(i)(t) = Kg(i)

1 +
(

Kg(i)

Hg(i)
− 1

)
exp(−rg(i)t)

+ εg(i), t, (1)

where Hg(i) is the initial height, Kg(i) is the fitted asymptotic height,

and rg(i) is the intrinsic rate of growth of replicate i of RIL g. For

simplicity, from here onwards we refer to r as “intrinsic growth

rate.” The measurement errors εg,t are assumed to be independent

and normally distributed [∼N(0, σ2
i )]. The three individual param-

eters (Ng(i), rg(i), Kg(i)) were assumed to be random, to covary, and

to have a within RIL variance and between RIL variance. Note that

in this model, σ2
i represents the measurement error only—within

RIL variability is captured by the variability of the parameters

Kg(i), Ng(i), and rg(i). Equation (1) was fit to all individual plants

for which we had complete height data at all six time points (N =
1968)—thus our estimate of r encompasses the entire growth tra-

jectory of individuals, with all height measurements made at the

same time. We used our initial height estimate (18 days) for Hg(i);

note that if one used height at time zero (i.e., zero cm tall at zero

days), equation (1) would be undefined.

For each individual in each environment, we used a Bayesian

approach to fit the model described by equation (1). A Metropolis–

Hastings algorithm was run using a flat uniform prior on the three

parameters Kg(i), Ng(i), and rg(i). The measurement error variance,

σ2, was fixed to 1 cm (i.e., that 95% of our measurements were

within ±2 cm of the true measurement; as described above, known

measurement errors were = 0.38 ± 0.14 cm [mean ± 95% c.l.]).

For each individual, we calculated the posterior means of these

three parameters (K, N, r) from a posterior sample size of 500,

after a burn-in period of 5000 iterations. To evaluate the sensitivity

of our results to our assumptions about the error variance, we

reran the Bayesian models with the error variance fixed to 2.0 cm.

Because the results between model fits were highly similar and

data we collected suggest that 1.0 cm is an empirically reasonable

estimate of the error variance, we present results from analyses

assuming σ2 = 1. Model fits were performed in Matlab.

For the logistic growth equation, the rate of height increase

per unit time (dh/dt) is maximized at K/2. To determine the age at

which plants in a particular treatment showed maximum growth,

we evaluated equation (1) using the treatment means for r, K, and

H, with t ranging from zero to 57 days. We then recorded the

time (in days) at which height was the closest to K/2. This metric

provides an estimate of when during the course of the experiment

the rate of height increase (dh/dt) was maximized in each light

and density treatment.

Treatment effects on intrinsic growth rate
To estimate the effects of light availability and intraspecific den-

sity on intrinsic growth rate, we used a mixed model ANOVA

that accounted for the split-plot design of our experiment. For this

mixed model, individual values of r were the response variables,

whereas light, density, light × density, and greenhouse bench were

fixed effects. Random effects included line, line × light, line ×
density, line × light × density, line × bench, light × bench,
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and light × bench × density interactions. We used the Kenward–

Roger adjustment for denominator degrees of freedom for F-tests.

The random effects terms involving bench were included because

of the split-plot nature of the light treatment, which were applied

half a bench at a time.

Genetic correlations across environments
To estimate genetic correlations in intrinsic growth rate across

density environments, we used a two-step procedure. In the

first step, a mixed model was used to fit the genetic variance–

covariance matrix for the 10 different environmental conditions

after adjusting for within RIL variation and modeling noise. In

the second step, PCA was used on the estimated covariance ma-

trix to identify directions of greatest genetic variability. In brief,

our goal was to distinguish between three sources of variation in

plant intrinsic growth rates: (1) Variation due to model fitting, (2)

within-RIL variation, and (3) between RIL variation. For analysis

of genetic correlations in intrinsic growth rates across environ-

ments, only the third source of variation was of interest. As such,

we estimated the genetic variance–covariance matrix of intrin-

sic growth rates across densities in a manner that reflected be-

tween RIL variation only, and not the within RIL or model fitting

variation.

Using equation (1) above, we obtained for each individual i

of RIL g (i.e., g(i)), in a specific density and light environment,

dl, a posterior sample of s of the possible values of the parameter.

We then assumed that each posterior value of r from model fit s,

for replicate i of RIL g in environment dl (i.e., rg(i), s, dl) came

from the following mixed effect model:

rg(i),s,dl = pdl + bgg,dl + wgg(i),dl + eg(i),s,dl , (2)

where pdl is the fixed population mean for r across all density and

light environments, bgg,dl is the effect of RIL g in a given density-

light dl environment and wgg(i),dl is the effect of individual g(i)

in environment dl on r. Finally, eg(i),s,dl is the individual poste-

rior sampling error in r for the individual in question in a given

density light environment. In words, equation (2) is equivalent to:

Intrinsic growth rate = Population mean + RIL effect + Within

RIL effect + Model fitting effect. In equation (2), the posterior

sample size (s) is 500, the density-light index, dl, ranges from 1 to

10 to reflect the 10 experimental conditions, the number of RILs,

g, ranges from 1 to 49, and the number of individuals, i, indicates

the number of replicates of RIL g in environmental condition

dl.

An approach to estimating the genetic variance in intrinsic

growth rate, r, and its genetic covariances across environments

can be seen from rewriting equation (2) in vector form

rg(i),s = p + bgg + wgg(i) + eg(i),s, (3)

where rg(i),s is the vector of observed intrinsic growth rate param-

eters, r, p is a fixed effect vector describing the mean intrinsic

growth rate of the population, and vectors bgg, wgg(i), eg(i),s are

random effects indicating RIL effect, individual effect, and mod-

eling error in intrinsic growth rates, respectively. Note that the

between RIL variances and covariances of bgg form a matrix, in

which the diagonal elements reflect the between RIL variances,

and the off-diagonal elements reflect the genetic covariance in

the intrinsic growth rate parameter, r, across experimental en-

vironments. The genetic covariance across environments is due

to the use of the same RILs in each experimental environment.

In contrast, the within RIL variances and covariances of wgg(i),

form a diagonal matrix (i.e., with zeroes for covariances) because

the measurements for the different RILs in different environmen-

tal conditions were made on different individuals, so there is no

within-RIL covariance in intrinsic growth rate parameters. Like-

wise, because model fits were done on different individuals sep-

arately, the variances and covariances of the modeling error eg(i),s

also form a diagonal matrix.

Using the algebra outlined in Appendix S1, equation (3) can

be solved to obtain an unbiased estimate of the variance of bgg

that is corrected for unequal sample sizes. The resulting 10 ×
10 matrix describes genetic variation and covariation of intrinsic

growth rates within and across density environments for both light

treatments. To analyze this matrix, we used three PCA models: (1)

A PCA of the first five rows and columns, which describes genetic

variation and covariation in intrinsic growth rates across density

in the shade treatment, (2) a PCA of the rows and columns 6–

10, which describes genetic variation and covariation in intrinsic

growth rates across density in the sun treatment, and (3) a PCA of

the entire 10 × 10 matrix, which describes genetic variation and

covariation in intrinsic growth rates across all density and light

environments simultaneously.

Matrix comparisons
We used Cheverud’s random skewers method (Cheverud 1996;

Cheverud and Marroig 2007) to quantitatively compare the across-

density genetic variance–covariance matrices for the two light

environments. We made comparisons across light environments

because (1) light levels are qualitatively different between habi-

tats; (2), the genetic covariance structure of shade-avoidance traits

can vary across sites with different light environments (Donohue

et al. 2000b); and (3) we assume that the majority of seed dispersal

will be within habitats that naturally experience a range of density

environments (see below). In the random skewers approach, a pair

of variance–covariance matrices are multiplied by a set of random

vectors (applied to each matrix), and the mean vector correlation

of the response vectors is calculated. Hypothesis testing is per-

formed by comparing the mean vector correlation to the distribu-

tion obtained from 10,000 pairs of random vectors (Revell 2007).
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Surveys of impatiens density
We used our surveys of naturally occurring Impatiens density vari-

ation to estimate the frequency of the density environments used

in the greenhouse experiment. For the clearing site, we had 105

separate estimates of density, whereas for the woodland site we

had 175 separate estimates of density (combining across transect

points and years). Temporal consistency of densities in our plots

was high—density in a plot in one year was highly correlated with

density in that plot in the next year (median Pearson r = 0.71 for

sun; 0.63 for woods for six successive year to year comparisons;

N = 15 and 25 plots, respectively). For information on the spatial

variation in density within years, see Schmitt et al. (2003).

To estimate the frequency of our experimental treatment den-

sities, we took advantage of the fact that our experimental density

treatments are an approximate doubling series (64, 144, 289, 625,

1225 pl/m2). As such, on a log2 scale, they are each separated by

approximately the same distance (on a log2 scale, the density treat-

ments were: 6, 7.17, 8.175, 9.288, 10.25). Accordingly, we log2

transformed our natural density estimates, and created frequency

histograms with each “bin” centered on the log2-transformed val-

ues of our experimental density treatments; boundaries between

bins were half-way between adjacent values. This approach has

two advantages: all of the bins for creating the frequency distri-

bution are of similar size (≈1 unit on a log2 scale), and it takes

advantage of the natural spacing of our experimental units.

Quantitative implications for microevolution
We combined our estimates of the across environment genetic

variance–covariance matrix and the frequency of selective envi-

ronments with hypothetical estimates of natural selection (β) to

predict the likely evolutionary response of intrinsic growth rate.

We predicted the likely evolutionary response under two sce-

narios, either equal frequency of selective environments or the

estimated frequency of selective environments, using the equa-

tion �z = Gaβs. Here, �z is the vector describing the change

in the mean intrinsic growth rate in each environment, Ga is the

across-density genetic variance–covariance matrix (i.e., within-

density genetic variances on the diagonal, across-density genetic

covariances on the off-diagonals), and βs = βf , where β is the

selection gradient for intrinsic growth rate in that environment

and f is the frequency of selective environments ranging from

zero to 1. We assume that population regulation is local within

density environments and leads to a soft-selection model (hence

subscript s for β; cf. Gomulkiewicz and Kirkpatrick 1992; Kelley

et al. 2005), which may be appropriate for Impatiens given past

findings of primarily local seed dispersal and microgeographic

variation for life history and morphological traits (Schmitt et al.

1985; Argyres and Schmitt 1991). We further assume that any

departures from �z = Gβ caused by Impatiens’ mixed mating

system (as opposed to random mating) are equal across all den-

sity environments. We explored scenarios that altered β and f in

2 × 2 fashion: experimental or empirical estimates of f × constant

or density-dependent β.

For our greenhouse experiment, where each density environ-

ment was equally frequent, f = 0.2; in this analysis, we explicitly

assume that populations will experience all density environments

within a habitat (i.e., unlimited and equal dispersal to different

density micro-environments or plots within a sun or woods pop-

ulation). To use empirically estimated frequencies of density en-

vironments, we pooled all density measurements below 64 pl/m2

(to the left of the dashed line in Fig. 2) with the lowest density

category, ensuring that our frequencies summed to 1. In our use of

the natural density frequencies, we assume that populations will

experience (and be able to disperse to) the density environments

of that habitat in proportion to their actual frequency in nature.

Because of the short duration of our greenhouse experiment,

we could not obtain reliable estimates of β, and as such use hy-

pothetical values, following the approach of Steven et al. (2007;

also see and Calsbeek and Goodnight (2009)). Although the actual

magnitude of the predicted responses to selection will depend on

the assumed β, differences between predictions made using the

estimated frequency of our density environments and the assump-

tion of equal frequency illustrate the importance of the frequency

of selective environments. Similarly, using hypothetical values of

β that are constant across all density environments allows an as-

sessment of the relative contributions of differences in the genetic

variance–covariance matrices. We considered two scenarios: (1)

Constant selection, with mean-standardized β equal to 0.1 for in-

trinsic growth rate, and (2) a gradual shift of mean-standardized

β from −0.1 at the lowest density to +0.1 at highest density, with

values of −0.05, 0, and 0.05 for the intermediate densities. In

the latter scenario, we assumed that selection was acting against

rapid intrinsic elongation rates at low densities and in favor of

rapid intrinsic elongation rates at high densities, consistent with

expectation that overtopping neighbors has a fitness advantage at

high density, but that at low density, the costs outweigh the bene-

fits (e.g., Dudley and Schmitt 1996). We used mean-standardized

selection gradients because of their ease of interpretation (i.e., a

mean-standardized β of 0.1 indicates selection on the trait 10% as

strong as selection on fitness; Hereford et al. 2004; Hansen and

Houle 2008) and their utility with traits that range from zero to

1, like r, which have bounded standard deviations (Stinchcombe

2005).

Results
GENERAL PATTERNS OF GROWTH

Curves describing the growth trajectories as a function of time

and density for 49 RILs in the 10 experimental conditions are

presented in Figure 1. In general, plants elongated earlier and more
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Figure 1. Growth curves for Impatiens capensis RILs in the 10 density-light environments. Panels in the left of the column portray the

shade treatment (A, C, E, G, I), with density increasing from the top of the page to the bottom. Panels in right column portray the sun

treatment (B, D, F, H, J). In several panels, the reaction norms are on top of each other and are not individually distinguishable. The vertical

bar shows the time at which the rate of height increase (dh/dt) was maximized, if the estimated maximum was within the observed time

range of the data.
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Table 1. ANOVA for the effects of light and density on maximal

intrinsic growth rate (r).

Source df F P

Light treatment 1, 8.11 72.93 <0.0001
Density treatment 4, 38.9 329.88 <0.0001
Light×Density 4, 32.7 5.35 0.0020

rapidly at higher densities, and this effect was greater in the neutral

shade treatment, resulting in taller plants at harvest. However,

elongation also leveled off earlier at higher densities, especially

under neutral shade, suggesting that the shade-avoidance response

was resource-limited under those conditions.

Inspection of the growth curves reveals appreciable variation

in the timing of maximum growth rate—that is, when during the

experiment dh/dt was maximized. In general, the highest densities

experienced maximum growth rate earliest in the experiment, and

this was slightly more pronounced in the shade treatment. For the

two lowest densities for the shade treatment and the three lowest

densities in the sun, the maximum rate of growth is modeled to

have occurred after the end of the experiment. These data indicate

that the growth curves in panels A, C, B, D, and F had yet to reach

an inflection point, after which height would asymptote and dh/dt

would decline.

LIGHT AND DENSITY EFFECTS ON r

Mixed model ANOVA revealed that both light, density, and the

light × density interaction significantly affected the growth rate

of the RILs (Table 1). The ANOVA suggests that the treatments

were effective in creating different growth trajectories in the RILs.

The individual least-square means of r (Table 2) suggest that

elongation rate increased monotonically with density in both sun

and shade, as expected for typical shade-avoidance responses.

Elongation rate was always higher in the shade than in the sun

treatment for a given density, suggesting that shade-avoidance

responses were enhanced under low light conditions.

Table 2. Least square means for r (±1 SE), and genetic variance

estimates in the 10 light-density treatments.

mean r Genetic variance
Density

Shade Sun Shade Sun

64 0.0608 (0.004) 0.0469 (0.004) 0.0261 0.0116
144 0.0659 (0.004) 0.0469 (0.004) 0.0122 0.0065
289 0.1060 (0.004) 0.0623 (0.004) 0.0243 0.0120
625 0.1650 (0.004) 0.1306 (0.004) 0.0374 0.0208
1225 0.1688 (0.004) 0.14442 (0.004) 0.0561 0.0355

Table 3. Across-density genetic correlations for intrinsic growth

rate in the two light environments. Above the diagonal: Shade

treatment; Below the diagonal: Sun treatment.

Density (pl/m2) 64 144 289 625 1225
64 0.30 0.26 0.13 0.10
144 0.32 0.08 0.59 0.55
289 0.54 0.35 0.11 0.02
625 0.48 0.36 0.61 0.86
1225 −0.31 −0.24 −0.32 −0.19

GENETIC VARIATION WITHIN TREATMENTS

Both the spread of the curves in Figure 1 and the genetic variance

estimates for r (Table 2) suggest significant genetic variation in

growth that differs between experimental environments. In gen-

eral, increasing density increased the expression of genetic vari-

ation in intrinsic growth rates in both sun and shade treatments,

although the effect was more pronounced in the shade. For a given

density, genetic variance estimates were 1.5- to 2-fold higher in

the shade than the sun.

MIXED-MODEL PCA OF r ACROSS DENSITY

ENVIRONMENTS

In the shade environment, intrinsic growth rates were largely

positively correlated across all densities (Table 3). Across-

environment genetic correlations ranged from weak (rgae = 0.016

between densities 289 and 1225) to quite strong (rgae = 0.86,

between densities 625 and 1225; Table 3). In the shade, most low

correlations involved density 289. Although low correlations can

be driven by low amounts of genetic variance in one treatment,

the genetic variance expressed in this environment is comparable

to that expressed in density 64 and 625, and across-density cor-

relations in r with these treatments were also weak (rgae = 0.13,

0.11, respectively).

In the shade, the largest contribution to PC1 of intrinsic

growth rates came from densities 625 and 1225 (Table 4), with

less of a contribution from the three lowest density environments

(Table 4), suggesting that this PC represented an index of shade-

avoidance responses to high density. PC2, in contrast, was loaded

on growth at the lowest three densities. Cumulatively, the first

three PCs explained 91.7% of the genetic variation in intrinsic

growth rates within and across density environments.

In the sun environment, PC1 accounted for 52% of the

variation, and the first three PCs accounted for 88% of the ge-

netic variation in intrinsic growth rates within and across density

environments. However, in contrast to the shade, we detected

negative covariances between intrinsic growth rates in different

density environments. Specifically, growth at the highest density

(1225 pl/m2) was always negatively correlated with growth in

the other four densities (rgae = −0.19 to −0.32; Table 3). These
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Table 4. Principal components analysis of intrinsic growth rates across density environments. Entries are the elements of the eigenvec-

tors. PCA was performed separately for the shade and sun treatments.

Shade Sun
Density

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

64 0.1034 0.7359 −0.6337 0.1802 −0.1169 −0.3177 0.2455 0.7884 0.0323 −0.4650
144 0.2378 0.1114 −0.1546 −0.7942 0.5257 −0.1681 0.1161 0.0612 0.9147 0.3433
289 0.0514 0.6472 0.7492 0.0425 0.1242 −0.3545 0.3185 0.2174 −0.4020 0.7510
625 0.6012 −0.0210 0.1149 −0.3329 −0.7216 −0.4301 0.6371 −0.5570 −0.0046 −0.3144
1225 0.7541 −0.1633 −0.0070 0.4803 0.4170 0.7485 0.6472 0.1313 0.0261 0.0547
Eigenvalues 0.0925 0.0316 0.0191 0.0073 0.0057 0.0452 0.0240 0.0073 0.0051 0.0049
% Variance 59.22 20.25 12.23 4.68 3.62 52.29 27.73 8.4 5.92 5.66

explained

negative covariances were reflected in the PC analysis, in which

the loadings for density 1225 and densities 64–625 had opposing

signs for PC1 (Table 4). The concordance between the loadings of

PC1 and the individual elements of the variance covariance ma-

trix indicates that this negative covariance contributes appreciably

to the multivariate pattern of genetic variation and covariation in

intrinsic growth rates.

Analysis of the full 10 × 10 matrix that described genetic

variation and covariation in intrinsic growth rates within and

across all experimental environments reveals a similar pattern

to the separate analyses of each light environment (Table S1).

PC1 accounted for 51% of the genetic variation, and had load-

ings of the same sign for all experimental environments except

the highest density in the sun. These results have two implica-

tions. First, the contrasting loadings on PC1 for intrinsic growth

rate in the highest density in the sun treatment with all other en-

vironments (i.e., all densities in the shade and densities 64–625

in the sun; Supplemental Table 1) indicate a pervasive negative

across-environment genetic covariance in intrinsic growth rates.

In particular, intrinsic growth rates in the highest density envi-

ronment in the sun are negatively correlated with intrinsic growth

rates in other density environments in the shade and sun. Second,

the generally positive covariances in intrinsic growth rate across

both density and light environments (indicated by loadings of the

same sign for all densities but 1225 in the sun) suggest that natural

selection on growth rate in one density and light environment will

likely lead correlated responses in other light and density environ-

ments. We also failed to detect any evidence of a “shade tolerance

PC,” that would be indicated by a PC with opposite loadings in

sun and shade across all densities.

MATRIX COMPARISONS

Analysis of the two across-density genetic variance–covariance

matrices by random skewers showed that the response vectors

generated by multiplying the sun and shade matrices by random

vectors were similar (vector correlation = 0.70), although this

correlation coefficient was only marginally significant (P = 0.06).

The significance of the vector correlation obtained was insensitive

to the number of random vectors used—we found P = 0.06–0.07

for N = 1,000; 10,000; and 100,000 skewers.

NATURAL FREQUENCY OF IMPATIENS DENSITY

ENVIRONMENTS

Frequency distributions of intraspecific density from natural pop-

ulations are presented in Figure 2. In general, the woodland pop-

ulation contains more sites in which density is low to moder-

ate (e.g., 16–144 pl/m2), while the clearing population tends to

contain more sites in which density is substantially higher (144–

625 pl/m2). For the experimental density treatments used in our

greenhouse study, 64 pl/m2 occurs less frequently in the clearing

population, ≈10%, compared to ≈25% for the woodland popula-

tion. The second lowest experimental density, 144 pl/m2 was the

modal density for both populations (35% and 31% for clearing

and woodland, respectively). In contrast, the three highest exper-

imental densities (289, 625, 1225 pl/m2) were found much more

commonly at the clearing site versus the woodland site (18% vs.

≈7%, 14% vs. 2%, 3% vs. 0%). The absence of the highest density

in the woodland site is striking, as appreciable genetic variation

for growth in this environment was detected in the experiment.

These data suggest that cryptic genetic variation exists that may

facilitate adaptation to this novel (and likely rare) environment.

QUANTITATIVE IMPLICATIONS FOR

MICROEVOLUTION

The predicted evolutionary responses for the four selective scenar-

ios we calculated are portrayed in Figure 3A–D. Under positive

directional selection in each environment, a positive response to

selection is observed in all density environments, in both sun

and shade (Fig. 3A). The larger evolutionary responses in the

shade treatment likely reflect the larger elements of Ga. For the
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Figure 2. Naturally occurring estimates of the frequency of density environments in Impatiens populations. The histogram was created

by transforming density to a log2 scale, to account for the fact that the experimental treatment densities (between the dotted lines) are

in an approximate doubling series. Bins are centered on the values shown, with boundaries half-way between adjacent categories.

sun treatment, these findings indicate that the effects of positive

selection on intrinsic growth rate in the highest density have a

larger contribution to the evolutionary response than selection on

negatively correlated traits in other densities. However, when the

natural frequency of the selective environments is accounted for,

two features emerge: the likely evolutionary response in the shade

becomes predominated by low-density environments and the evo-

lutionary response in the sun at high-density becomes negative

(Fig. 3B). The former trend is driven by low-density environ-

ments being more common in the shade, whereas the latter trend

is driven by the relative rarity of high-density environments in the

sun. Given a rare occurrence of high-density sun environments,

the response to selection at 1225 pl/m2 becomes dominated by

directional selection on negatively correlated traits at other, more

frequent densities.

Under a hypothesized selection regime of negative direc-

tional selection at low density transitioning to positive directional

selection on intrinsic growth rate at high density, the likely evo-

lutionary responses differ markedly, especially when density en-

vironments are equally frequent (Fig. 3C). At both the lowest

and highest densities, the evolutionary response is in the direction

of selection, with larger responses seen in the shade (owing to

greater genetic variance in that environment). At the intermediate

density (in which there was no direct selection on intrinsic growth

rate), the evolutionary response was predicted to be a decrease in

mean intrinsic growth rates, because intrinsic growth rate at 289

pl/m2 showed stronger correlations with intrinsic growth rates at

the two lowest, as opposed to highest densities. Similarly, the

projected evolutionary response in the shade at 144 pl/m2 and in

the sun at 625 pl/m2 are in the opposite direction of selection on

the traits; again, these trends are driven by across environment

genetic covariances (Fig. 3C).

Accounting for the natural frequency of these selective envi-

ronments dramatically changes the picture: predicted responses to

selection become negative for all density and light environments,

with the exception of 1225 pl/m2 in the sun. The reason is that

the frequency of selective environments is heavily biased toward

low-density environments (especially in the shade). The effects of

directional selection to reduce intrinsic growth rates in common

environments combined with positive across-environment genetic

covariances leads to a net reduction in intrinsic growth rates.

Discussion
Understanding how across-environment genetic correlations can

shape the evolution of quantitative traits for species that inhabit

variable environments requires estimating these important evolu-

tionary parameters across multiple ecological and environmen-

tal conditions. By examining many density environments across

two light treatments, we found evidence not only for changes

in across-density genetic variances and covariances, but also for

patterns that we likely would not have detected using fewer ex-

perimental environments or treatments. Although the correlations

we detected were driven by density environments that occur

relatively rarely in nature, according to our field surveys, this

does not imply that they are unimportant: it is possible for the
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Figure 3. Predicted responses to selection for Impatiens intrinsic growth rates in five density environments, given the estimated across-

environment genetic variance–covariance matrices. Responses to selection are given as the evolutionary response (�z) divided by the

preselection mean (μ = 0.1). (A) Constant selection, and equal frequency of density environments (f), (B) Constant selection, natural

frequency of density environments, (C) Variable selection, equal frequency of density environments, (D) Variable selection, natural

frequency of density environments. Values for f and βμ used in calculations are given below the bars.

evolutionary response in rare environments to be reduced, or even

reversed, due to effects of selection in common environments and

across-environment genetic covariances. Likewise, it is possible

for selection in rare environments to alter the evolutionary re-

sponse in common environments. In the sections below, we first

discuss the relationship between our analytical approach and other

methods as well as the limitations of our experimental design, be-

fore considering the implications of our results for the evolution

of these traits within and across heterogeneous environments.

RELATIONSHIP TO ALTERNATIVE MODELING

APPROACHES

Several alternative modeling approaches could conceivably be

implemented to examine the genetic covariance in growth rate

parameters across environments. One alternative is multivariate

random regression. In this framework, a regression of size against

time is performed, and a deviation from the population mean re-

gression is estimated for each genetic unit (RILs in our case),

using a restricted maximum likelihood framework. This approach

can be applied using simple (linear, quadratic, or cubic) regres-

sion models on the independent variable, regression on orthogonal

polynomials of the independent variable (Meyer and Hill 1997;

Meyer 1998), or splines (White et al. 1999). Implementing ran-

dom regression in a multivariate framework allows a simultaneous

estimation of the genetic variances and covariances of these slopes

within and across environments—that is, do RILs that have pos-

itive deviations from the population mean regression slope (i.e.,

grow faster than average) in environment 1 also have them for

environments 2, 3, n? This approach has been implemented suc-

cessfully in agricultural contexts (with much larger sample sizes;
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Veerkamp and Thompson 1999; Veerkamp et al 2001; Karacaoren

et al. 2006), but in our attempts to apply it to these data the models

failed to converge.

Given the failure of multivariate random regression for our

data, several other alternatives are also available: Kirkpatrick and

Meyer’s method for direct estimation of principal components

(Kirkpatrick and Meyer 2004; Meyer and Kirkpatrick 2005), fac-

tor analytic modeling of the G matrix (Hine and Blows 2006),

and modeling of the G × E interaction matrix with factor analysis

(Meyer 2009). Implementation of these methods would take our

fitted intrinsic growth rates for individuals as the observed data

and then proceed with statistical genetic analysis. We elected not

to pursue these approaches as it is not straightforward with these

methods to accommodate the model fitting error introduced by

the fact that our “trait” is really a parameter value sampled from a

posterior distribution. In contrast, the mixed-model PCA approach

that we implemented allows us to accommodate and remove the

influence of model fitting variation in a straightforward manner.

Past applications of random regression based methods for

ecological and evolutionary studies have included investigation

of how juvenile weight changes as a function of age (Wilson

et al. 2005), growth rate as a function of temperature (Kingsolver

et al. 2001b, 2004), and female mating preference functions for

male traits (McGuigan et al. 2008). Of these studies, Kingsolver’s

work on thermal performance curves in caterpillars is the most

directly comparable. Using both standard multivariate techniques

and random regression on orthogonal polynomials, Kingsolver

et al. (2004) detected negative across-temperature genetic covari-

ances in caterpillar growth rates (mg/h) between the two highest

temperatures assayed. One similarity to our work is the involve-

ment of extreme, rare environments (high density in our case, high

temperature in theirs) with negative genetic covariances that could

constrain adaptation to heterogeneous environments; however, the

presence of only two studies make conclusions about the gener-

ality of this pattern unclear. In Kingsolver’s work, caterpillars

experienced all temperature environments in succession, simu-

lating the fine-grained fluctuation of temperature experienced by

wild animals. In contrast, for our experiment and modeling, indi-

viduals experienced only a single density for their lifetime.

IMPLICATIONS OF USING RILs

We argued above that RILs may approximate the natural genetic

structure of I. capensis populations, and further that RILs present

a useful tool for estimating across-environment covariances be-

cause replicate individuals that are nearly genetically identical can

be grown in multiple environments. Notwithstanding the experi-

mental benefits RILs provide and the plausibility of our arguments

about genetic structure, our use of RILs to estimate genetic param-

eters such as variances and covariances could have several impor-

tant implications. First, due to transgressive segregation, the RIL

population we used may have expressed greater amounts of ge-

netic variation and covariation than typical of natural populations,

potentially inflating both our estimates and our statistical power.

Second, our use of RILs necessarily only samples whichever al-

leles were present in the parents originally crossed, rather than

representing a random sample of the population. Whether the

balance of these effects leads to an overestimation or underes-

timation of quantitative genetic parameters remains unclear. To

some extent this problem is inherent for species with a mixed mat-

ing system, as neither selfed inbred lines nor paternal half-sibling

crosses will accurately approximate the natural patterns of mating

and transmission of alleles and genotypes within populations.

RESOURCE SENSITIVITY OF GENETIC VARIANCES

AND ACROSS-DENSITY COVARIANCES

By manipulating intraspecific density (and hence the R:FR cue)

and light availability simultaneously, we were able to examine

the genetic relationship between a single ecologically impor-

tant trait—elongation rate—across a range of density environ-

ments that are ecologically relevant to Impatiens (cf. Arnold and

Peterson 2002) and how this relationship depended upon resource

availability. There is an increasing appreciation that genetic corre-

lations, much like any other genetic parameter (genetic variance,

heritability, etc.), are dependent on the environment in which they

are measured (e.g., Donohue and Schmitt 1999; Donohue et al.

2000b; Stinchcombe 2002; see Sgro and Hoffman 2004 for a

review).

Our results indicate that across-density genetic correlations

are also potentially sensitive to environmental conditions (in

this case, resource availability). For example, analysis by ran-

dom skewers suggests that the two matrices will produce sim-

ilar, but not identical, responses to selection when multiplied

by random vectors. Our primary interest in comparing genetic

variance–covariance matrices is in how they affect the response

to selection—either for multiple traits in a single environment

(Steven et al. 2007; Calsbeek and Goodnight 2009; Stinchcombe

et al. 2009) or for a single trait in multiple environments. Because

we lacked reliable estimates of β, we followed the approach of

Steven et al. (2007) by applying hypothetical, yet ecologically re-

alistic estimates. For instance, comparisons of between the filled

and open bars of Figure 3A,C reflect differences in the underly-

ing matrices, as each matrix has been multiplied by the same β

vector and the same frequency of selective environments. These

results suggest that the different Ga matrices can lead to greater

than twofold (or greater) differences in the predicted response to

selection for intrinsic growth rate in a given environment, even

if the overall pattern of the response to selection is similar in

direction across all environments (e.g., Fig. 3A).

Collectively, our results suggest that generalizations about

the across-environment genetic correlations between traits must
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be made with caution, as the correlations themselves can be sen-

sitive to which environments are considered and the resource

conditions under which they are assessed.

CORRELATIONS ACROSS DENSITY ENVIRONMENTS

The mixed-model PCA that we developed to decompose vari-

ation in intrinsic growth rates across density revealed negative

across-density covariances, but only in the sun environment. The

overall pattern of across-environment genetic correlations in the

mixed-model PCA—both from considering light environments

separately and from considering them together—suggested that

intrinsic growth rate at the highest density (1225 pl/m2) in the sun

was negatively correlated with intrinsic growth rate in all other

environments, suggesting a possible trade-off between shade-

avoidance responsiveness at high density and intrinsic growth at

lower densities. Simply by inspecting the covariances/correlation

matrices, it is difficult to discern how much of an evolution-

ary constraint would be imposed by this relationship—the ge-

netic correlations are moderate in magnitude, and the frequency

of the high-density environment is relatively low in the wild.

However, interpretation of genetic variance–covariance matrices

by inspection of the individual elements is notoriously difficult

(Blows et al. 2004; Blows 2007a,b; Houle 2007; Walsh 2007),

and the degree to which these genetic covariances and correla-

tions will act as constraints will depend on the magnitude and

direction of selection on the associated traits (Lande 1979). For

instance, if selection is acting in opposite directions on nega-

tively correlated traits (as may be likely for shade avoidance

traits at high vs. low density), the consequences of the correlation

will be to accelerate rather than constrain the evolutionary re-

sponse (Lande 1979; Tiffin and Rausher 1999; Etterson and Shaw

2001; Stinchcombe and Schmitt 2006; Agrawal and Stinchcombe

2009).

Our application of hypothetical selection gradients clarifies

the potential influence of the detected across-environment genetic

covariances, and the critical importance of the frequency of selec-

tive environments (cf. Via and Lande 1985, 1987; Gomulkiewicz

and Kirkpatrick 1992; Huber et al. 2004). For the case of con-

stant selection across equally frequent environments (f = 0.2 and

β = 0.1 for all environments), the negative across-environment

genetic covariances in the sun environment reduces the response

to selection that would be predicted based on that environment

alone. When accounting for the empirically estimated frequency

of selective environments, correlated responses to selection dom-

inate: intrinsic growth rate is predicted to decrease at high density

in the sun, despite positive selection on it in that environment

(Fig. 3B). The reason is that there is positive selection on intrinsic

growth rate in more common environments, combined with the

negative across-environment genetic covariances. It is important

to note that the assumed strength of β in Figure 3A,B only affects

the magnitude of the responses, not the relative differences be-

tween Figure 3A,B which are driven by the frequency of selective

environments (and similarly for comparisons of 3C and 3D).

Our projection of the likely response to selection in intrinsic

growth rates ignores the consequences of selection on other, ge-

netically correlated traits within those environments. The likely

consequences of not accounting for these traits and selection on

them will depend on the magnitude of the estimated genetic co-

variances between omitted traits and intrinsic growth rate, and

the strength of selection on other traits. If across-environment

genetic covariances for the same trait are generally of lower mag-

nitude than within environment genetic covariances between dif-

ferent traits, the response to selection will likely be determined by

within-environment forces. However, fully predicting the evolu-

tionary responses of a suite of traits across several environments

is likely to be challenging: it also will require an estimate of the

genetic covariances between trait 1 in environment 1 with trait

2 in environment 2. For example, considering even two traits in

five environments, this would require estimation of 45 unique

genetic variances or covariances. Consideration of multiple cor-

related traits in multiple environments will clearly be a difficult

challenge.

Estimating across-environment genetic correlations has pro-

duced much discussion in the literature on the most appropriate

analytical methods (Rausher 1984; Via 1984; Shaw 1987; Fry

1992; Windig 1997; Astles et al. 2006). Our mixed-model ap-

proach was motivated by our desire to account for model fitting

variation, unequal sample sizes, and within-RIL variation; these

three factors are not explicitly accounted for by an RIL means

approach. The ability to account for within-RIL variation is likely

to be an important advantage for quantitative genetic designs in

which one of the experimental treatments is likely to increase the

amount of within-line variation (e.g., if increased density leads

to asymmetric competition). Similarly, the variance decomposi-

tion approach developed here to account for variation produced

by model fitting would seemingly have other application to other

function-valued traits (e.g., tolerance, plasticities, and other fitted

reaction norms; e.g., Izem and Kingsolver 2005).

CONCLUSIONS

Although much effort has gone into developing methods for com-

paring G matrices as well as estimating across-environment ge-

netic correlations that might act as constraints, comparatively

less empirical effort has been devoted to quantifying the fre-

quency of selective environments (but see Weis and Gorman 1990;

Kingsolver et al. 2001b; Arnold and Peterson 2002; Huber et al.

2004) despite its well-known theoretical importance (Via and

Lande 1985, 1987; Gomulkiewicz and Kirkpatrick 1992). Our

results highlight the potential insight of combining estimates of

G matrices and genetic constraints and the frequency of selective
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environments in a single analysis to understand the evolution of

complex traits in heterogeneous environments.
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