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ABSTRACT

The importance of genes of major effect for evolutionary trajectories within and among natural
populations has long been the subject of intense debate. For example, if allelic variation at a major-effect
locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can
have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an
Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing
different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We
find that the allele present at ERECTA significantly alters G-matrix structure—in particular the genetic
correlations between branch number and flowering time traits—and may also modulate the strength of
natural selection on these traits. Despite these differences, however, when we extend our analysis to
determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to
selection are similar. To compare responses to selection between allele classes, we developed a resampling
strategy that incorporates uncertainty in estimates of selection that can also be used for statistical
comparisons of G matrices.

THE structure of the genetic variation that underlies
phenotypic traits has important consequences for

understanding the evolution of quantitative traits
(Fisher 1930; Lande 1979; Bulmer 1980; Kimura

1983; Orr 1998; Agrawal et al. 2001). Despite the
infinitesimal model’s allure and theoretical tractability
(see Orr and Coyne 1992; Orr 1998, 2005a,b for
reviews of its influence), evidence has accumulated from
several sources (artificial selection experiments, exper-
imental evolution, and QTL mapping) to suggest that
genes of major effect often contribute to quantitative
traits. Thus, the frequency and role of genes of major
effect in evolutionary quantitative genetics have been a
subject of intense debate and investigation for close to
80 years (Fisher 1930; Kimura 1983; Orr 1998,
2005a,b). Beyond the conceptual implications, the
prevalence of major-effect loci also affects our ability
to determine the genetic basis of adaptations and
species differences (e.g., Bradshaw et al. 1995, 1998).

Although the existence of genes of major effect is no
longer in doubt, we still lack basic empirical data on how
segregating variation at such genes affects key compo-
nents of evolutionary process (but see Carrière and
Roff 1995). In other words, How does polymorphism at

genes of major effect alter patterns of genetic variation
and covariation, natural selection, and the likely re-
sponse to selection? The lack of data stems, in part, from
the methods used to detect genes of major effect:
experimental evolution (e.g., Bull et al. 1997; Zeyl

2005) and QTL analysis (see Erickson et al. 2004 for a
review) often detect such genes retrospectively after
they have become fixed in experimental populations or
the species pairs used to generate the mapping pop-
ulation. The consequences of polymorphism at these
genes on patterns of variation, covariation, selection,
and the response to selection—which can be transient
(Agrawal et al. 2001)—are thus often unobserved.

A partial exception to the absence of data on the
effects of major genes comes from artificial selection
experiments, in which a substantial evolutionary re-
sponse to selection in the phenotype after a plateau is
often interpreted as evidence for the fixation of a major-
effect locus (Frankham et al. 1968; Yoo 1980a,b;
Frankham 1980; Shrimpton and Robertson

1988a,b; Caballero et al. 1991; Keightley 1998; see
Mackay 1990 and Hill and Caballero 1992 for
reviews). However, many of these experiments report
only data on the selected phenotype (e.g., bristle
number) or, alternatively, the selected phenotype and
some measure of fitness (e.g., Frankham et al. 1968, Yoo

1980b; Caballero et al. 1991; Mackay et al. 1994; Fry
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et al. 1995; Nuzhdin et al. 1995; Zur Lage et al. 1997),
making it difficult to infer how a mutation will affect
variation, covariation, selection, and evolutionary re-
sponses for a suite of traits that might affect fitness
themselves. One approach is to document how variation
at individual genes of major effect affects the genetic
variance–covariance matrix (‘‘G matrix’’; Lande 1979),
which represents the additive genetic variance and
covariance between traits.

Although direct evidence for variation at major-effect
genes altering patterns of genetic variation, covariation,
and selection is rare, there is abundant evidence for the
genetic mechanisms that could produce these dynam-
ics. A gene of major effect could have these consequen-
ces due to any of at least three genetic mechanisms: (1)
pleiotropy, where a gene of major effect influences
several traits, including potentially fitness, simulta-
neously, (2) physical linkage or linkage disequilibrium
(LD), in which a gene of major effect is either physically
linked or in LD with other genes that influence other
traits under selection, and (3) epistasis, in which the
allele present at a major-effect gene alters the pheno-
typic effect of other loci and potentially phenotypes
under selection. Evidence for these three evolutionary
genetic mechanisms leading to changes in suites of traits
comes from a variety of sources, including mutation ac-
cumulation experiments (Clark et al. 1995; Fernandez

and Lopez-Fanjul 1996), mutation induction experi-
ments (Keightley and Ohnishi 1998), artificial selec-
tion experiments (Long et al. 1995), and transposable
element insertions (Rollmann et al. 2006). For pleiot-
ropy in particular, major-effect genes that have con-
sequences on several phenotypic traits are well known
from the domestication and livestock breeding litera-
ture [e.g., myostatin mutations in Belgian blue cattle and
whippets (Arthur 1995; Grobet et al. 1997; Mosher

et al. 2007), halothane genes in pigs (Christian

and Rothschild 1991; Fujii et al. 1991), and Booroola
and Inverdale genes in sheep (Amer et al. 1999;
Visscher et al. 2000)]. While these data suggest that
variation at major-effect genes could—and probably
does—influence variation, covariation, and selection on
quantitative traits, data on the magnitude of these
consequences remain lacking.

Recombinant inbred line (RIL) populations are a
promising tool for investigating the influence of major-
effect loci. During advancement of the lines from F2’s to
RILs, alternate alleles at major-effect genes (and most of
the rest of the genome) will be made homozygous,
simplifying comparisons among genotypic classes. Be-
cause of the high homozygosity, individuals within RILs
are nearly genetically identical, facilitating phenotyping
of many genotypes under a range of environments. In
addition, because of recombination, alternative alleles
are randomized across genetic backgrounds—facilitat-
ing robust comparisons between sets of lines differing at
a major-effect locus.

Here we investigate how polymorphism at an artifi-
cially induced mutation, the erecta locus in Arabidopsis
thaliana, affects the magnitude of these important
evolutionary genetic parameters under ecologically re-
alistic field conditions. We use the Landsberg erecta
(Ler) 3 Columbia (Col) RIL population of A. thaliana to
examine how variation at a gene of major effect in-
fluences genetic variation, covariation, and selection on
quantitative traits in a field setting. The Ler 3 Col RIL
population is particularly suitable, because it segregates
for an artificially induced mutation at the erecta locus,
which has been shown to influence a wide variety of
plant traits. The Ler 3 Col population thus allows a
powerful test of the effects of segregating variation at a
gene—chosen a priori—with numerous pleiotropic ef-
fects. The ERECTA gene is a leucine-rich receptor-like
kinase (LRR-RLK) (Torii et al. 1996) and has been
shown to affect plant growth rates (El-Lithy et al. 2004),
stomatal patterning and transpiration efficiency (Masle

et al. 2005; Shpak et al. 2005), bacterial pathogen
resistance (Godiard et al. 2003), inflorescence and
floral organ size and shape (Douglas et al. 2002; Shpak

et al. 2003, 2004), and leaf polarity (Xu et al. 2003; Qi

et al. 2004).
Specifically, we sought to answer the following ques-

tions: (1) Is variation at erecta significantly associated
with changes to the G matrix? (2) Is variation at erecta
associated with changes in natural selection on genet-
ically variable traits? And (3) is variation at erecta
associated with significantly different projected evolu-
tionary responses to selection?

MATERIALS AND METHODS

Plant material and experimental design: A. thaliana (com-
mon name: mouse-ear cress) is a largely selfing annual plant,
native to Eurasia and recently introduced to North America
(Jorgensen and Mauricio 2004). Plants initially grow as a
vegetative rosette until they bolt and produce a flowering in-
florescence from the apical meristem. Branches are produced
both on the inflorescence and from the rosette. We charac-
terized the size, architecture, and phenology of plants from
a simple set of measurements: diameter of the rosette, the
number of inflorescence branches, the number of basal ro-
sette branches (hereafter, basal branches), and bolting date.
We estimated reproductive fitness from fruit number, which
is highly correlated with seed number (Westerman and
Lawrence 1970; Mauricio and Rausher 1997).

In this study we analyze data from a Ler 3 Col RIL
population (Lister and Dean 1993) that was planted into a
recently plowed field at Brown University’s Haffenreffer
Reserve, Bristol, Rhode Island. As full details of the methods
are given elsewhere (Weinig et al. 2002, 2003a,b), we provide
only a brief summary. Seeds were cold-stratified in the dark for
14 days, germinated in the Brown University greenhouse, and
then planted into the field in early April. One replicate
seedling per RIL was planted into 30 randomized blocks.
Plants that died within 1 week of transplanting (presumably
due to transplant shock) were scored as missing data; plants
that survived transplanting yet died before setting fruit were
assigned a fitness value of 0 and included in our estimates of
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fitness (Weinig et al. 2003a). An appreciable number of plants
per RIL suffered rabbit herbivory, which in turn affected a host
of phenotypic traits (Weinig et al. 2003a,b). We analyze only
data from the replicates of each RIL that escaped herbivory.
Sample sizes ranged from N¼ 8 to 28 individuals per RIL, with
a median ¼ 18 or 19 individuals, depending on the trait.

Data analysis: To examine the effect of variation at erecta on
genetic variances and covariances between the four traits
(rosette diameter, bolting time, inflorescence branches, and
rosette branches), we first split the data set according to which
erecta allele the lines contained, as determined from the
Nottingham Arabidopsis Stock Centre (http://arabidopsis.
info/). RILs lacking erecta genotype information were ex-
cluded from subsequent analyses. (Recall that the Ler parent
in the cross was the source of the mutant erecta allele.)

We compared genetic variance–covariance matrices for
lines with alternate erecta alleles using the program CPCrand
(Phillips and Arnold 1999). CPCrand tests a series of
hypotheses about matrix similarity by examining whether
the matrices share principal components, are proportional
to each other, or are in fact equal to each other (i.e., whether G
matrices are identical between groups of lines with different
erecta alleles). Each of these hypotheses in the ‘‘jump-up’’
approach (Phillips and Arnold 1999) is tested against a
null model of unrelated matrix structure by comparing the
results of a likelihood-ratio test to those obtained with a large
number of randomizations. CPCrand has become a common
method of comparing genetic variance–covariance matrices
(see Caruso et al. 2005; Stinchcombe and Schmitt 2006;
Brock and Weinig 2007; Doroszuk et al. 2008). Because we
elected to multiply the G matrix by biologically informative
vectors (i.e., selection gradients, see below), we did not use the
random skewers method (Cheverud 1996) for G-matrix
comparison.

Analysis of raw phenotypic data with CPCrand required a
high degree of matrix bending (because of negative eigenval-
ues), which has yet to be verified when used with randomiza-
tion tests for hypothesis testing (CPCrand documentation). To
alleviate this problem, we estimated best linear unbiased
predictors (BLUPs) for each trait for all of the RILs in the
experiment using restricted maximum likelihood (Proc
Mixed, SAS). We then used these BLUPs in the ‘‘phenotypic
analysis’’ option of CPCrand to estimate G matrices as if they
were phenotypic variance–covariance matrices, using 5000
randomizations. Utilizing BLUPs eliminated the need for
matrix bending, as the estimated matrices were positive
definite. All G-matrix comparisons for the erecta locus showed
similar patterns of statistical significance when using either the
raw phenotypic data or the G matrices estimated from BLUPs.

The exact null distribution of test statistics to use for testing
whether lines with alternate alleles at erecta (or any locus) have
similar G matrices remains unclear. For instance, because we
analyzed an RIL population, lines with the same erecta locus
will differ at other loci throughout the genome, and, con-
versely, lines with alternate erecta alleles will be the same at
other loci throughout the genome; how this might affect
hypothesis testing for G-matrix similarity is unknown. There-
fore, to address to the likelihood of obtaining significant
differences in G-matrix structure simply by splitting the data
according to any single marker locus, we performed similar
analyses to those described above for 52 other reference loci,
which were chosen to be evenly spaced throughout the
genome and not underlying QTL for the traits in question
in this experiment. From these analyses, we estimated a null
distribution of test statistics for G-matrix similarity. Because
our goal was to estimate a null distribution, we use only the test
statistics for the level of the CPC hierarchy that correspond to
hypothesis tests for erecta.

We also implemented a likelihood-based approach to test
the null hypothesis that a single G matrix, vs. two G matrices
corresponding to the erecta allele classes, adequately described
our data. To do this, we estimated a multivariate G matrix in
SAS using Proc Mixed (SAS v. 9.1.3), using the factor-analytic
modeling approach described by Hine and Blows (2006).
This approach, which estimates the effective number of
principal components of the G matrix, reduces the number
of parameters necessary to describe the pattern of variance–
covariance (see Hunt et al. 2007; Mcguigan and Blows 2007;
Doroszuk et al. 2008; Mcguigan et al. 2008). Within a factor
analytic modeling framework, we evaluated whether a model
allowing for separate G matrices for the two erecta allele classes,
vs. a single G matrix, provided a better fit to the data using
likelihood-ratio tests and the ‘‘group ¼ ’’ option of the
‘‘random’’ statement in Proc Mixed (following Doroszuk

et al. 2008).
To determine whether erecta influences natural selection, we

estimated selection gradients (Rausher 1992; Stinchcombe

et al. 2002). We regressed BLUPs for relative fitness on the
BLUPs for the four traits; the partial regression coefficients
from these models estimate directional selection gradients.
Selection gradients estimated with breeding values are equal
to traditional phenotypic selection gradients (Lande and
Arnold 1983) in the absence of environmentally induced
covariances between traits and fitness (Rausher 1992). In an
initial model, we included erecta allelic class as a categorical
variable and erecta 3 trait interaction terms. Because of a
marginally significant interaction between erecta and inflores-
cence branch number for relative fitness in this initial model,
we subsequently estimated selection gradients for each erecta
allele class separately. In practice, the overlapping 95%
confidence limits of these estimates will not bias quantitative
predictions, as the methods we use incorporate uncertainty in
the parameter estimates (see below).

To examine whether variation at erecta was associated with
different responses to selection, we solved the equation Dz ¼
Gb for each erecta allele class, where G is the genetic variance–
covariance matrix (estimated as the variances and covariances
of the BLUPs), b is a vector of directional selection gradients,
and Dz is a vector describing the change in the mean
phenotype. Conceivably, a similar approach could be used to
examine whether the loss of genetic variation due to selection
[given by DG ¼ G(g � bbT)G, where g is the matrix of
nonlinear selection gradients (Lande and Arnold 1983)] or
the orientation of G and g (Blows et al. 2004) is affected by
variation at erecta (J. R. Stinchcombe, unpublished data).

Placing confidence limits on Dz is rarely done (e.g., Conner

and Via 1992; Etterson and Shaw 2001; Caruso 2004; but
see Smith and Rausher 2008), and existing published
analytical methods (Mcculloch et al. 1996) have yet to be
implemented. To estimate uncertainty in Dz, we developed a
parametric bootstrapping approach. We considered each
point estimate of bi as the mean of a normal distribution,
with standard deviation equal to the standard error of the
regression coefficient. We then drew 999 values from each of
these normal distributions independently; samples were
drawn from each distribution independently, as the multiple
regression used to obtain bi (and their standard errors)
estimates direct selection on the traits while statistically
controlling for selection on the other traits in the regression
model. For traits for which erecta was not associated with
significant differences in bi, these random draws sample
highly overlapping distributions. The 999 values were assem-
bled into b vectors, which were then multiplied with the
estimated G matrices to obtain a distribution of Dzi. We
considered the 25th and 975th values of each Dzi, once sorted
in ascending order, to represent the lower and upper 95%
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confidence limits for each Dzi. Because this approach does not
capture uncertainty in the estimation of G, it underestimates
of the confidence limits on Dz.

RESULTS

Patterns of G-matrix similarity: Analysis with
CPCrand suggests that G matrices differ significantly
depending on which erecta allele is present. Specifically,
the hypothesis of 1 common principal component is
rejected (likelihood ratio ¼ 11.7386, P ¼ 0.0174 on the
basis of 5000 randomizations). The G matrices and
genetic correlation matrices for the Col and Ler erecta
alleles are presented in Table 1, with bivariate plots in
Figure 1. Qualitatively, the differences between these
matrices are likely driven by correlations/covariances
involving inflorescence branches. For example, in lines
with the Ler erecta allele, inflorescence branch number is
highly correlated with bolting time and rosette diame-
ter, while showing a weak negative correlation with basal
branch number. In lines with the Col erecta allele, the
correlations between inflorescence branch number and
bolting time and rosette diameter are reduced (by
approximately one-half), while the correlation between
inflorescence branch number and basal branch number
is approximately twice as negative (Figure 1).

Despite the significant differences in G matrices
detected by CPCrand, principal components analysis
(PCA) revealed that the angle (u) between PC1 of the
two G matrices was 5.9�, indicating close alignment of
the first eigenvectors. In other words, the main di-
rection of genetic variation in multivariate trait space is
similar for the two allele classes. Nevertheless, the PCA
also suggests that significant differences in the G ma-
trices are driven by differences in genetic variances and
covariances associated with inflorescence branches and
basal branches between the two erecta allele groups. For
both Col and Ler erecta alleles, PC1 explains .96% of the
genetic variation (Table 2). For inflorescence branches,
the loading on PC1 is approximately threefold higher
for lines with the Ler erecta allele than for lines with the

Col erecta allele. For basal branches, although this trait
does not load heavily on PC1 for either allele class, the
loading for lines with the Col erecta allele is higher than
for lines with the Ler allele.

Genomewide distribution of CPCrand results: To
evaluate how likely it would be to get significant
CPCrand results simply by splitting the data into two
allelic classes at any locus, we performed CPCrand
analyses for 52 markers chosen throughout the genome.
For each of these markers, we saved the P-value of the
hypothesis test of 1 common principal component
[CPC(1)]; all of these hypothesis tests were based
on 5000 randomizations, using a genetic variance–
covariance matrix estimated from BLUPs. The overall
distribution of P-values suggests that rejection of 1 com-
mon principal component is rare (Figure 2)—i.e., for
98% of the markers used, lines with alternate alleles
shared at least 1 principal component. The P-value for
rejecting CPC(1) for the erecta locus was the most
extreme P-value we obtained, and for only 1 other marker
locus (mi238) was the hypothesis of CPC(1) rejected
at the a ¼ 0.05 level. These results suggest that the
significant differences in G-matrix structure detected by
CPCrand for erecta are rare on a genomewide basis.

Factor-analytic modeling of the G matrix: Factor-
analytic modeling suggested that G was of full rank (i.e.,
all four eigenvalues were significantly different from
zero). These results held whether we fit factor analytic
models (FA0) using unstandardized data that included
a main effect of the trait to control for the trait mean or
using data where the traits were standardized to a mean
of 0 and a variance of 1 (cf. Hunt et al. 2007). In both
cases, decreasing from FA0(4) to FA0(3) (i.e., from four
to three PCs) led to significantly worse model fit ac-
cording to likelihood-ratio tests (unstandardized data,
x2¼ 5.8, d.f. ¼ 1, P¼ 0.016; standardized data, x2¼ 6.9,
d.f.¼ 1, P¼ 0.0086). Moreover, for both unstandardized
and standardized data, estimation of separate G matrices
for different erecta allele classes significantly improved
model fit (unstandardized, x2 ¼ 26.7, d.f. ¼ 10, P ¼
0.0039; standardized, x2 ¼ 23.5, d.f. ¼ 10, P ¼ 0.009),

TABLE 1

Genetic variance–covariance and correlation matrices for RILs containing either Col or Ler erecta alleles

Bolting time Rosette diameter Inflorescence branches Basal branches

Bolting time Col: 7.26 Col: 0.22 Col: 0.27 Col: 0.11
Ler: 5.22 Ler: 0.22 Ler: 0.71 Ler: �0:0019

Rosette diameter Col: 0.47 Col: 0.03 Col: 0.017 Col: �0:0017
Ler: 0.59 Ler: 0.027 Ler: 0.042 Ler: 0.00055

Inflorescence branches Col: 0.32 Col: 0.31 Col: 0.098 Col: �0:019
Ler: 0.67 Ler: 0.55 Ler: 0.21 Ler: �0:014

Basal branches Col: 0.15 Col: �0.037 Col: �0.23 Col: 0.07
Ler: �0.0036 Ler: 0.014 Ler: �0.12 Ler: 0.055

Genetic variances–covariances, estimated from BLUPs are underlined. Genetic correlations, estimated as Pearson correlations
of BLUPs are not underlined. Correlations in boldface type are significant at P ,0.05, while those in italics are marginally sig-
nificant (P , 0.1). For the Col erecta allele, N ¼ 29 RILs, and for the Ler erecta allele, N ¼ 59 RILs.
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suggesting that G matrices differed between erecta allele
classes.

Because G matrices are frequently not of full rank
(Hine and Blows 2006; Hunt et al. 2007; Mcguigan

and Blows 2007; Doroszuk et al. 2008; Mcguigan et al.
2008), and PC1 of the G matrices explained such a large
fraction of genetic variation (vs. PCs 3 and 4; Table 2),
we also repeated the likelihood-ratio tests for scenarios

where the G matrices were constrained to have only 1, 2,
or 3 PCs. These analyses test the hypothesis of whether
separate G matrices are supported even when all of the
genetic variation and covariation is described by a
reduced number of axes. In all cases, we found that
estimating separate G matrices for lines with different
erecta alleles provided significantly better fits to the data
(x2 . 26.6, P , 0.0011 for all comparisons).

Figure 1.—Bivariate plots showing the genetic correlations between four quantitative traits for the alternate erecta allele classes.
Top, Col erecta allele; bottom, Ler erecta allele.
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Patterns of natural selection: Analysis of covariance
for relative fitness suggested marginally significant
evidence that natural selection on inflorescence
branches differed depending on the erecta locus and
that variation at erecta was associated with differences in
relative fitness (Table 3; Figure 3). Accordingly, we
estimated selection gradients for the four traits sepa-
rately for each erecta allele class (Table 4).

For lines that contained the Col erecta allele, we
detected significant directional selection to increase
rosette diameter, the number of inflorescence branches,
and the number of basal branches (Table 4)—bigger
plants with more branches had higher relative fitness.
In lines that contained the Ler erecta allele, we found
a similar pattern: directional selection significantly
favored larger rosette diameters and more inflorescence
and basal branches. The selection gradient estimates
suggest larger gradients for lines with the Col allele,
although the ANCOVA indicates that these differences
approached significance only for inflorescence branches.

Predicted responses to selection: Despite significant
genetic variation in the four traits, and significant nat-
ural selection on three of them, the predicted responses
to natural selection remain small—both in original trait
units (data not shown) and when judged relative to the
phenotypic standard deviation of the traits (Figure 4).
Comparison of Tables 1 and 4 reveals a likely mecha-
nism: for the three traits under the strongest natural
selection (rosette diameter, inflorescence branches, and
basal branches), there is appreciably less genetic varia-
tion, in either allelic class. Conversely, the trait under the
weakest natural selection (bolting time) showed the
greatest genetic variance.

Despite differences between erecta allele classes in the
point estimates for genetic variances, for covariances,
and possibly for selection gradients, similar predicted
responses to selection are obtained for these two classes
(Figure 4). The apparent differences between erecta
allele classes in the patterns of genetic variance/co-
variance for inflorescence branches (Table 1), when
combined with the differences in the estimated selec-
tion gradients (Table 4), show a ‘‘canceling-out’’ pat-
tern. In lines with Ler erecta (compared to those with
Col), direct selection on inflorescence branch number

is weaker, yet this trait has larger variance and stronger
pairwise covariances and correlations with two other
traits (rosette diameter and bolting time). Vice versa,
inflorescence branch number is under stronger selec-
tion in lines with Col erecta, yet variance as well as the
covariances and correlations between inflorescence
branches and rosette diameter, and inflorescence
branches and bolting time, are of smaller magnitude.
Placing confidence intervals on the predicted responses
to selection by incorporating variation in the estimation
of b reveals that the small differences obtained in the
point estimates of Dz are within the range of estimation
uncertainty.

DISCUSSION

Our results indicate that alternate alleles at the erecta
locus are associated with both significant changes in G-
matrix structure and marginally significant differences
in natural selection. Nevertheless, our results predict
relatively minor differences in the expected response to
natural selection. There appear to be multiple mecha-
nisms behind this discrepancy. First, overall selection in
this experiment was weak for the three traits that ex-

TABLE 2

PCA of the estimated G matrices for Col and Ler erecta alleles

Col erecta Ler erecta

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

Bolting time 0.9987 �0.0264 �0.0341 �0.0271 0.9895 �0.1391 �0.0293 �0.026
Rosette diameter 0.03059 0.11945 0.01396 0.99227 0.04271 0.10187 0.07858 0.99077
Inflorescence branches 0.03784 0.8223 0.55742 �0.108 0.13806 0.96435 0.19105 �0.1203
Basal branches 0.01517 �0.5557 0.82941 0.05477 �0.0007 �0.2007 0.97799 �0.0569
Percentage of variance explained 97.59 1.40 0.71 0.30 96.59 2.16 0.96 0.29

Figure 2.—Distribution of P-values for hypothesis tests of
CPC(1) for 52 markers chosen throughout the genome and
erecta. Note that on the x-axis, smaller P-values are to the right
of the axis.
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hibited substantial genetic variances and covariances.
Second, the same trait that exhibited stronger selection
but lower genetic variance and covariances in one erecta
allele class exhibited weaker selection but higher variance
in the other allele class. Finally, detecting significant
differences in the predicted response to selection is likely
to be quite challenging, given estimation uncertainty.
Below, we discuss these results in light of past work on the
role of major genes in evolution and the challenges of
statistically comparing predicted responses to natural
selection.

Evolution and genes of major effect: The last 15 years
have led to an increasing acceptance that genes of major
effect contribute to adaptive evolution. Orr (1998,
2005a,b) has noted that growing acceptance of this
result was due, in part, to widespread QTL mapping
results showing chromosomal regions of major effect
and experimental evolution studies that showed muta-
tions with large fitness effects, along with the lack of
convincing data in favor of many alleles of small effect
(Orr and Coyne 1992). The acceptance of genes of
major effect was probably also aided by the intriguingly
similar distributions of empirically detected QTL effects
and Orr’s (1998) theoretically derived distributions.
These QTL and experimental evolution results were
consistent with earlier results from Drosophila quanti-
tative genetics and plant genetics (e.g., Frankham et al.
1968; Frankham 1980; Yoo 1980a,b; Gottlieb 1984,
1985). Likewise, Robertson (1967) predicted that the
distribution of effect sizes for genes affecting a trait
would be leptokurtic, with many genes having small to
no effects and a few having large effects.

Despite the acceptance of the role of major genes in
evolution, we still have remarkably little knowledge of
how polymorphism at these genes will affect the
microevolution of quantitative traits. In the study most
directly comparable to ours, Carrière and Roff (1995)
examined how the evolution of insecticide resistance
affected the heritabilities and genetic correlations

between life history traits and insecticide resistance in
natural populations of the oblique-banded leaf roller
[Choristoneura rosaceana (Lepiodoptera: Tortidae)].
They found that the spread of resistance allele(s)
increased the additive genetic variance in larval weight
and diapause propensity and decreased the genetic
correlation between these traits, consistent with their
theoretical predictions (Carrière and Roff 1995).
Using an experimental genetic approach, Bradshaw

and Schemske (2003) reciprocally introgressed YELLOW
UPPER (YUP) floral color alleles derived from Mimulus
lewisii and M. cardinalis into the alternate species and
measured changes in pollinator attraction and visitation.
Variation at this locus was sufficient to change the
pollinator visitation, suggesting that reproductive iso-
lation due to pollinator preferences could be due to a
single allele. Although Bradshaw and Schemske (2003)
did not report how variation at the YUP locus affected
the correlations between, or selection on, floral traits, it is
not difficult to envision pollinator-mediated selection on
floral color and floral design.

Our results suggest that polymorphism at genes of
major effect can have statistically significant effects on
G-matrix structure. The most striking results we ob-
tained were the nearly twofold differences in the genetic
correlations involving inflorescence branch number
and either bolting time or rosette diameter. Therefore,
our results suggest that allelic variation at major-effect
loci can influence the direction of trait variation avail-
able to natural selection. We might have predicted that
alternate erecta alleles would affect plant architecture
traits, given past findings of QTL centered on erecta [e.g.,
apical inflorescence and basal branch height QTL
(Weinig et al. 2003b) and flowering time under
short days (Weinig et al. 2002)], as well as the con-
firmed effects of the gene itself on organ size and
shape (Douglas et al. 2002; Shpak et al. 2003, 2004;
Kliebenstein 2007).

Figure 3.—Graphical portrayal of natural selection on in-
florescence branch number, depending on the erecta locus.
The difference in the slopes of the lines is marginally signif-
icant.

TABLE 3

Analysis of covariance for relative fitness, testing the effects
of erecta, phenotypic traits, and the erecta 3 trait interactions

Source d.f. F P

erecta 1 2.70 0.104
Bolting time 1 0.41 0.53
Rosette diameter 1 16.72 0.0001
Inflorescence branches 1 18.02 ,0.0001
Basal branches 1 28.50 ,0.0001
erecta 3 bolting time 1 0.51 0.48
erecta 3 rosette diameter 1 2.46 0.12
erecta 3 inflorescence branches 1 2.84 0.096
erecta 3 basal branches 1 0.45 0.50
Error 78

Significant effects are shown in boldface type, and margin-
ally significant effects (P , 0.10) are in italics.
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While our results for G-matrix comparisons were
statistically significant by a variety of approaches and
our analysis of marker loci suggested that significant G-
matrix differentiation was unlikely to occur by chance
alone, the quantitative magnitude of the differences
detected appears small. The interpretation of slight
quantitative effect on G-matrix structure is supported by
the similarity of the eigenvectors of each G matrix, the
close alignment of PC1 of each matrix in multivariate
space (i.e., the angle between them), and the similar
responses to selection produced by each G matrix.
These findings point to the need for statistically signif-
icant G-matrix comparisons to be interpreted in light of
their biological significance. Surprisingly, of the suite of
tools available for G-matrix comparisons (see Steven

et al. 2007 and Doroszuk et al. 2008 for overviews), few
investigators have paired G matrices with estimates of
natural selection (b vectors) to see if the predicted
response to selection will differ (see below).

Our use of the ERECTA to examine the effects of a
mutation at a highly pleiotropic gene on G-matrix
structure, selection, and the response to selection
entailed both benefits and costs. On the one hand,

erecta is an induced mutation and may provide a better
model of new mutations—upon which much of the
theoretical work is based—than standing genetic varia-
tion. The incorporation of erecta into an RIL mapping
population also breaks up associations between erecta
alleles and their respective Landsberg and Columbia
genomes, which would otherwise confound estimation
of the effects of this ERECTA. In addition, the ERECTA
gene is highly pleiotropic, and mutations to it (induced
or natural) may have greater consequences on a suite of
traits than mutations to typical genes throughout the
genome and thus enhanced our power to detect effects
on G-matrix structure and selection. On the other hand,
these same factors also could represent disadvantages.
For instance, it is clearly possible (perhaps likely) that
the induced erecta mutation is not representative of
naturally occurring mutations at this gene, and the
pleiotropic nature of the ERECTA gene is not likely to be
representative of all genes throughout the genome.
Both of these interpretations are supported by our
analyses of reference loci that indicated that most loci
shared at least 1 PC and by other studies from the
literature that suggest pleiotropy may be restricted and
limited to functionally integrated units (e.g., Cheverud

et al. 1997). The relatively small Ler 3 Col mapping
population may have inflated the effect sizes associated
with erecta and limits our ability to distinguish between
the effects of erecta vs. neighboring loci. In addition, RIL
crosses often estimate genetic variance associated with
divergence between populations, and thus the genetic
variances, covariances, and selection detected using
them may not be reflective of standing genetic variation
within populations (e.g., Agrawal et al. 2001; Orr

2005b). Ultimately resolving any of these issues would
be a daunting empirical challenge. However, our find-
ings that variation at erecta is significantly associated with
changes in G-matrix structure and possibly natural
selection nonetheless illustrate how polymorphism at
major genes can affect contemporary patterns of ge-
netic (co)variation and selection.

Predicting the response to selection: Intensive ef-
fort over the last 25 years has been devoted to estimating
natural selection in the wild (see Endler 1986;
Hoekstra et al. 2001; Kingsolver et al. 2001; Geber

TABLE 4

Genotypic selection gradients estimated from BLUPS, estimated separately for RILs with alternate erecta alleles

Col erecta Ler erecta

Trait b (SE) P b (SE) P Genetic s Phenotypic s

Bolting time �0.0073 (0.01) 0.49 0.0004 (0.06) 0.95 2.41 4.35
Rosette diameter 0.415 (0.15) 0.012 0.185 (0.07) 0.015 0.19 0.47
Inflorescence branches 0.212 (0.08) 0.017 0.092 (0.03) 0.0027 0.43 1.31
Basal branches 0.258 (0.09) 0.010 0.20 (0.04) ,0.0001 0.26 2.03

For Col erecta A, N ¼ 29 lines; for Ler erecta, N ¼ 59 lines. For purposes of comparison, genetic and phenotypic standard deviations
for the traits are also provided (calculated from the entire data set). Significant selection gradients are shown in boldface type.

Figure 4.—Predicted response to selection of the four
quantitative traits, calculated separately for each erecta allele
class. The response to selection for each trait Dzi is in stan-
dard deviation units. Error bars indicate the upper and lower
95% confidence intervals for the predicted response to selec-
tion based on a parametric bootstrap that incorporated uncer-
tainty in the estimation of selection.
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and Griffen 2003; Hereford et al. 2004). While these
efforts may have clarified the typical strength of selec-
tion, they are rarely combined with estimates of genetic
variation to predict evolutionary trajectories. Houle

(2007) recently noted how surprising it is that estimates
of G and b are rarely (with some exception) obtained
from the same population and also rarely combined
to make quantitative predictions. Theoretical work
(Turelliand Barton 1990, 1994; Barton and Turelli

1991) has shown that predictions based on the in-
finitesimal model are robust to the genetic details
underlying the traits for predictions made over a short
number of generations, suggesting that these predic-
tions could be useful.

We suggest that one challenge currently inhibiting
predictions of multivariate evolution—apart from ob-
taining the necessary data—is that there are no ac-
cepted methods for placing confidence limits on
estimates of Dz or significance testing of Dz. In the
univariate case, investigators have compared the actual
response to selection to predictions from the breeders
equation (R ¼ h2s) and placed uncertainty estimates on
R by using the upper and lower confidence limits of the
heritability or selection differential estimates (Galen

1996; Grant and Grant 2006). Simply using the upper
and lower confidence limits of bi is not applicable to the
multivariate case, as it is unclear a priori which combi-
nations of upper and lower estimates of bi should be
multiplied with G.

For multivariate responses to selection, several inves-
tigators have predicted Dz (e.g., Conner and Via 1992;
Mitchell et al. 1998; Etterson and Shaw 2001;
Caruso 2004), yet were unable to place confidence
limits on their estimates. Etterson and Shaw (2001)
tested the significance of the predicted response to
selection, estimated as the additive genetic covariance
between a trait and fitness, with likelihood-ratio tests
that compared the fitted model to one in which the
correlation was constrained to equal zero. Using a
different approach, Caruso (2004) compared Dz to
selection to b using a t-test, taking advantage of the
standard error of the b-estimates obtained by regression.

The benefit of our approach is that predicted
responses to selection can be compared to zero for
significance testing, as well as to other specified values
(e.g., Dz for a different treatment or allelic class, to b, to
univariate predictions). The approach inherits all of the
assumptions of selection analyses (Mitchell-Olds and
Shaw 1987) and adds the assumption that individual
bi’s are themselves sampled from normal distributions.
An alternative would be to bootstrap the multiple
regressions used to estimate b, sample individual bi’s
from these bootstrap distributions (e.g., Calsbeek and
Smith 2007), and combine them with G to place
confidence intervals on Dz. Our method is similar to
the one used by Franks et al. (2007), who sampled from
bootstrapped distributions of both parent–offspring

regressions and selection differential estimates to pro-
duce confidence limits on R. Regardless of the method
used to incorporate uncertainty in b, the confidence
limits generated by our method are underestimates, as
no variation in the elements of G is included in the
estimation. Conceivably, families or inbred lines could
be sampled with replacement to create bootstrapped
estimates of G (e.g., Smith and Rausher 2008), which
could then be combined with b’s estimated from the
parametric boostrap to produce a confidence limit,
although this is likely to be computationally intensive if
G is estimated with likelihood. Despite the limitation of
not incorporating uncertainty in G, we argue that an
underestimate of the confidence limits of Dz is better
than no estimate.

One additional benefit of placing confidence limits
on Dz is that it can be used to compare G matrices. For a
given strength and pattern of selection, the evolutionary
response will be determined by the patterns of variation
and covariation described by G (Lande 1979). An
effective means of comparing G matrices is thus to
ask, for a given strength of selection, Are there differ-
ences in Dz? Our approach is similar to the ‘‘random
skewers’’ method developed by Cheverud (Cheverud

et al. 1983; Cheverud 1996; Cheverud and Marroig

2007) as well as to recent work by Smith and Rausher

(2008) and Hansen and Houle (2008). In the random
skewers method, randomly drawn vectors (with rows
equal to the dimension of G) are combined with the G
matrices being compared, and the distribution of vector
correlations between the Dz’s are compared. Steven

et al. (2007) modify the skewers approach and compare
Dz’s for different G by multiplying them by hypothetical
(yet ecologically realistic) b, a useful approach for when
b is either unknown or likely to change during adapta-
tion. Smith and Rausher (2008) compare the angles of
response vectors after projecting them onto a plane,
while Hansen and Houle (2008) calculate the ‘‘re-
sponse difference’’ by multiplying two G matrices (G1

and G2) by a given b and calculating the vector norm of
the difference between Dz1 and Dz2 (i.e., jDz1 � Dz2j).
Hansen and Houle (2009) give expressions for the
expectations of this norm over random selection gra-
dients, as a general measure of response differences
between G1 and G2 when b is unknown.

The main difference in emphasis of our approach is
that we combined G with empirical estimates of b, rather
than random vectors, and we used the confidence limits
of Dz for the individual traits to perform hypothesis
testing, rather than using the vector correlation, angles
between projections, or the vector norm. Moreover, in-
stead of yielding a simple P-value or an angle in multi-
variate space, both of which can be difficult to interpret
biologically, the information used by our approach to
perform hypothesis testing is evolutionarily and biolog-
ically relevant—the predicted changes in the means of
individual traits and an estimate of uncertainty.
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Conclusions and future directions: Understanding
the role of genes of major effect in contemporary
microevolution is likely to be an ongoing challenge.
While intuition might suggest that genes of major effect,
or those that affect several traits at once, might speed
adaptation, their spread through populations will ulti-
mately be determined by the relationship between the
traits they affect and fitness and any trade-offs they
generate with other traits under selection. Our results
suggest that pleiotropic genes of major effect will not
necessarily have dramatic effects on evolutionary trajec-
tories, although whether this is a general pattern
remains an empirical question. A major goal for future
empirical work will be to determine how any naturally
segregating genes of major effect influence the micro-
evolution of quantitative traits.
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