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Predicting the responses to natural selection is one of the key goals of evolutionary biology. Two of the challenges in fulfilling

this goal have been the realization that many estimates of natural selection might be highly biased by environmentally induced

covariances between traits and fitness, and that many estimated responses to selection do not incorporate or report uncertainty

in the estimates. Here we describe the application of a framework that blends the merits of the Robertson–Price Identity approach

and the multivariate breeder’s equation to address these challenges. The approach allows genetic covariance matrices, selection

differentials, selection gradients, and responses to selection to be estimated without environmentally induced bias, direct and

indirect selection and responses to selection to be distinguished, and if implemented in a Bayesian-MCMC framework, statistically

robust estimates of uncertainty on all of these parameters to be made. We illustrate our approach with a worked example of

previously published data. More generally, we suggest that applying both the Robertson–Price Identity and the multivariate

breeder’s equation will facilitate hypothesis testing about natural selection, genetic constraints, and evolutionary responses.

KEY WORDS: Bayesian, MCMC, multivariate breeder’s equation, response to selection, Robertson–Price Identity, secondary

theorem of selection, selection differential, selection gradient.

Observing and quantifying the components of the evolutionary

process—genetic variation, natural selection, and evolution-

ary responses—is one of evolutionary biology’s fundamental

goals. Toward this end, enormous effort has been devoted to

estimating patterns of genetic (co)variation in quantitative traits

(Falconer and Mackay 1996; Lynch and Walsh 1998) and

comparing those estimates across populations, types of traits, or

experimental treatments (Shaw 1991; Phillips and Arnold 1999;

Cheverud and Marroig 2007; Calsbeek and Goodnight 2009).

Likewise, the Lande–Arnold framework has revolutionized

our understanding of natural selection in natural populations

(Lande and Arnold 1983; Kingsolver et al. 2001; Kingsolver and

Diamond 2011), with extensive work devoted to the regression

framework for estimating selection (Mitchell-Olds and Shaw

1987; Phillips and Arnold 1989; Wade and Kalisz 1990; Shaw

and Geyer 1997; Blows and Brooks 2003; Hereford et al. 2004;

Stinchcombe et al. 2008). To date, however, two challenges have

limited our ability to combine estimates of genetic variation and

selection to predict evolution. First, many of the relationships

observed between traits and fitness in natural populations might

be environmentally induced, meaning they fail to contribute

to responses to selection (Schluter et al. 1991; Rausher 1992;

Kruuk et al. 2001, 2002; Stinchcombe et al. 2002). Second,

until recently, statistical tools for evaluating uncertainty in the

multivariate response to selection have incompletely captured

variation in either the genetic variation underlying traits or the

selection acting on them.

Recently, Morrissey et al. (2010, 2011, 2012a) have advo-

cated the secondary theorem of selection (STS; Robertson 1966;

Price 1970) as a superior method of meeting these challenges,

compared to the traditional multivariate breeder’s equation. By

estimating the genetic covariance between traits and relative
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fitness in a bivariate or multivariate model, one can directly obtain

predicted responses to selection, and in a way that is unbiased by

environmentally induced covariances between traits and fitness.

The downside of the STS approach, however, is that it does not

allow direct and indirect selection to be distinguished—a key

advance of the Lande and Arnold (1983) framework.

Here we outline an approach for estimating multivariate re-

sponses to selection that are unbiased by environmentally in-

duced covariances, allow direct and indirect selection to be dis-

tinguished, and in a way that allows estimates of uncertainty to

be placed on all parameter estimates. We illustrate this approach

with an empirical example.

ESTIMATING G, β, s, AND �z IN A SINGLE

FRAMEWORK

Robertson (1966) and Price (1970) showed that selection on a

phenotypic trait can be represented by the covariance between a

trait and relative fitness:

s = cov(w,z), (1)

a relationship known as the Robertson–Price Identity (Lynch and

Walsh 1998). An evolutionary response to selection will only

occur if there is a genetic covariance between breeding values for

a trait and fitness:

R = sg= cova(w,z). (2)

Here R indicates the response to selection, sg the genetic selection

differential, and cova is an additive genetic covariance (Robert-

son 1966; Price 1970; Crow and Nagylaki 1976; Rausher 1992).

Equation 2, the STS, shows that evolutionary responses to se-

lection equal the genetic covariance between a trait and fitness.

Equation (2) generalizes completely to multivariate form.

Etterson and Shaw (2001) provided a rigorous application of

(2) with maximum likelihood to predict evolutionary responses to

climate change, and tested whether estimates were significantly

different from zero, although they did not present estimates of

uncertainty in the predicted responses. The secondary theorem

approach also eliminates the problems of environmental covari-

ances between traits and fitness and of linear regression with best

linear unbiased predictors (BLUPs; Hadfield et al. 2010). Equa-

tion (2) includes the net effects of direct and indirect selection on

the traits of interest, whether correlated traits were measured or

even included in the analysis. The familiar multivariate breeder’s

equation, in contrast, is limited to measured traits:

�z = Gβ, (3)

where �z indicates the change in the mean of the phenotypic

traits, G is the genetic covariance matrix, and β is a vector of

selection gradients (Lande 1979).

An advantage of equation (2) over (3) is that it can be es-

timated in a single analysis, and hypothesis testing about ge-

netic covariances between traits and fitness can be performed

with either likelihood (Shaw 1991; Etterson and Shaw 2001) or

Bayesian methods (e.g., Hadfield 2008, 2010; Morrissey et al.

2012a). One disadvantage of equation (2), regardless of imple-

mentation method, is that distinguishing direct selection on the

trait itself and indirect selection on correlated traits is impossible.

Equation (3) has completely converse advantages and disadvan-

tages: selection gradients distinguish indirect and direct selection

(Lande and Arnold 1983; Rausher 1992), but the terms on the

right-hand side (RHS) of (3) are estimated independently, with no

obvious way to perform hypothesis testing about the left-hand side

(Simonsen and Stinchcombe 2010). In addition, selection gradi-

ents only partition direct and indirect selection accurately when

all of the correlated traits under selection have been included in

the model (Lande and Arnold 1983).

Morrissey et al. (2010, 2011) have pointed out that most

complex, ecologically important traits are likely to involve life

history, physiology, and behavior, and that it is unlikely investiga-

tors will ever measure all the necessary traits for equation (3) to

yield accurate predictions. Accordingly, they have advocated use

of the secondary theorem (2) to avoid the problem of correlated

traits being omitted from the analysis. However, because the sec-

ondary theorem approach (eq. 2) does not allow a distinction be-

tween direct and indirect selection, a key advance of (3) is lost by

using (2).

We advocate a combined approach that blends the merits of

equation (2) and (3), allows evolutionary responses to be esti-

mated directly, indirect and direct selection (and responses) to

be distinguished, with uncertainty estimates to be placed on pa-

rameters. We start by estimating a genetic covariance matrix,

Gzw, where one of the traits is relative fitness (Fig. 1); we use

Gzw to distinguish this matrix from the genetic covariance matrix

for all other traits, G. The diagonal element of Gzw correspond-

ing to relative fitness is the genetic variance in relative fitness,

which indicates the upper limit on the rate of evolution (Fisher’s

fundamental theorem; Fisher 1930). The matrix elements of the

column (or row) corresponding to relative fitness, excluding the

diagonal element, indicate genetic covariances between traits and

relative fitness. Arranged as a vector, these elements are sg, the

genetic selection differentials, and are predicted evolutionary re-

sponses for each trait (eq. 2). The remaining rows and columns

for traits other than relative fitness represent G for the measured

traits. One can estimate a genotypic selection gradient, βg, using

the definition of a selection gradient (Lande and Arnold 1983;

Rausher 1992):

βg = G−1sg . (4)
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Figure 1. Overview of the analytical approach for estimating multivariate responses to selection and genetic selection gradients, and

accompanying estimates of uncertainty, in a fashion unbiased by environmental covariances.

A prerequisite for using (4) is genetic variation in traits and

relative fitness (Rausher 1992). Estimating βg from the component

parts of Gzw offers some key advantages that do not appear to

have been previously recognized. First, it provides estimates of

G, βg, sg, and �z in a single analysis, with parameters unbiased

by environmentally induced covariances. Second, it allows the

genetic covariance between traits and fitness to be partitioned

between direct and indirect selection, combining the merits of the

STS and selection gradient approaches.

The estimate of βg from (4) will be sensitive to the omission

of genetically correlated traits (Rausher 1992), but estimates of

�z extracted from Gzw will not. To see how, note that substitution

of the RHS of (4) into (3) shows clearly that genetic covari-

ances between traits and fitness, sg, equal predicted evolutionary

responses (�z). A substantial predicted evolutionary response

(sg = �z >> 0) in the presence of near-zero selection gradients

(β ≈ 0) indicates that predicted evolutionary responses are due

to indirect selection on genetically correlated traits, rather than

direct selection. Formally, indirect responses to selection in focal

trait i from selection on n correlated traits can be estimated as
∑n

j Gi jβ j , where Gij are the genetic covariances between trait

i and other traits, βj are selection gradients for other traits, and

j �= i.

Estimating Gzw with Bayesian methods facilitates estimat-

ing uncertainty in evolutionary parameters: posterior distributions

of Gzw remain valid for any calculations or algebraic operations

performed on it (Hadfield 2010; Wilson et al. 2010, 2011). While

others have estimated and presented uncertainty in genetic covari-

ances between traits and fitness and subsequently derived evolu-

tionary metrics (Morrissey et al. 2012b), it does not appear to

have been applied to partition sg into βg. More generally, the pos-

terior distributions of Gzw and derived parameters can be used for

evaluating uncertainty in other evolutionary metrics, including the

angle between �z and β (Schluter 1996), the angle between β and

gmax (PC1 of G; Blows et al. 2004), the spectral decomposition

of the response to selection (Walsh and Blows 2009), the relative

magnitude of eigenvalues of G (Kirkpatrick 2009), and constraint

metrics that rely on �z (Hansen and Houle 2008; Agrawal and

Stinchcombe 2009; Conner 2012). While we employ a Bayesian

approach for estimating uncertainty in βg and �z (following

Morrissey et al. 2012b), other alternatives exist, a point we con-

sider in Discussion.

CASE STUDY: PREDICTED RESPONSES TO SELECTION

IN MORNING GLORY

We reanalyze data from the control treatment of an experiment

first described by Simonsen and Stinchcombe (2010). Because

full field methods, natural history, and experimental details have

been published, we only provide a brief overview here. We grew
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12 replicates of 50 inbred lines of Ipomoea hederacea in the field,

and measured three quantitative traits (mid-season size, final size,

and flowering time) as well as fitness (seed number). Relative

fitness for each individual was calculated by dividing total seed

number by mean seed number for all individuals in the control

treatment. The data analyzed here are identical to those previously

published, with three exceptions: (1) all phenotypic traits, except

relative fitness, were centered at zero prior to analysis, (2) we

did not apply any standardizations (i.e., division by the mean or

standard deviation) to phenotypic traits, (3) an observation for an

individual plant with an outlier for one trait was removed.

Data Analysis
TRADITIONAL ANALYSIS

We first estimated Gzw using REML as a point of comparison.

We used a multivariate mixed model, with Gzw estimated as the

unstructured covariance matrix at the inbred line level (type = UN,

Proc Mixed, SAS version 9.3). We report the results of REML

fits, and discuss the similarities between REML and Bayesian

analyses, in Supporting Information.

To estimate βg, we first performed a regression of relative

fitness on the three phenotypic traits, using inbred line means in

place of phenotypic estimates (Rausher 1992; Stinchcombe et al.

2002). We elected to use inbred line means because it is the most

common implementation of the genotypic selection analysis. As

our primary interest is in combining the merits of the STS and

the multivariate breeder’s equation, we do not formally test for

environmentally induced covariances, but instead focus on genet-

ically based estimates that avoid this problem. Methods for testing

for environmental covariances are well-established (Stinchcombe

et al. 2002; Hadfield 2008; Morrissey et al. 2010); preliminary in-

vestigation showed that βg and βp were very similar. Phenotypic

selection analyses using the Lande and Arnold (1983) approach

are presented in the Supporting Information.

BAYESIAN ANALYSIS

We estimated Gzw using a multivariate, random effects model in

a Bayesian-MCMC framework (MCMCglmm; Hadfield 2010).

While we focus on genetic variances and covariances, P, βp, sp

can be estimated from this model using the sum of genetic and

residual variance components. Briefly, the four traits were entered

as response variables, with inbred line designated as a random ef-

fect, and block as a fixed effect, specifying that the traits had

normal distributions. Traits were approximately normal on the

raw scale, which we retain to avoid scale issues commonly asso-

ciated with transformation (Houle et al. 2011). To evaluate how

well our model fit the data, in a preliminary analysis we followed

the recommendations of Gelman et al. (2004) by comparing the

posterior predictive distribution to the observed data. We gener-

ated 1000 predicted datasets and compared the observed means

and variances to the distribution of means and variances from

1000 predicted datasets. We did not observe any discrepancies

between the means and variances between the 1000 predicted

datasets and the observed dataset, indicating that the model fit the

data.

Fitting a Bayesian multivariate model requires specifying

priors and distributions for the covariance matrix. We explored

a variety of priors to ensure that our results were insensitive to

prior specifications. For models in which we hypothesized that

genetic and residual variances and covariances were sampled from

inverse Wishart distributions, we explored priors of either Vp or

0.5 × Vp on the diagonal, and degrees of freedom for the inverse

Wishart of 3.003, 3.5, and 4 (with 4 equaling the dimension of the

matrices being estimated). We also explored parameter-expanded

priors (e.g., Gelman et al. 2004, 2006), specifying that prior means

were zero and that the prior covariance matrix was diagonal with

variances equal to either 2500 or the REML estimate of Vg. For all

models, we used 50,000 burn-in iterations, followed by 500,000

iterations that were thinned every 500 samples, to obtain 1000

estimates of the means, variances, and covariances of the response

variables and both the residual and genetic levels. We monitored

autocorrelations among posterior samples, and found that they

typically were <0.02 between stored samples. For the results

presented below, we hypothesized that covariance matrices were

sampled from inverse Wishart distributions (with df = 3.003); for

priors, we used diagonal matrices of 0.5 × Vp. Results from this

model had the best combination of a low deviance information

criterion and well-behaved posterior distributions. Results of all

model fits are in the Supporting Information; differences in priors

and distributions had little effect on either quantitative estimates

or biological interpretations.

To evaluate uncertainty in predicted evolutionary responses

(sg, �z), we evaluated whether the 95% HPD (highest poste-

rior density) interval of the posterior distribution of an estimated

parameter overlapped zero. To characterize uncertainty in geno-

typic selection gradients (βg), we performed the necessary matrix

operations on 1000 samples of the posterior distribution of Gzw

(Fig. 1) and examined the 95% interval for individual elements

of βg. Statistical code in SAS and R for fitting these models and

processing the resulting matrices is included in the Supporting

Information.

Results
BAYESIAN ESTIMATES OF Gzw

We found positive genetic covariances among the phenotypic

traits, and substantially larger genetic estimates for mid- and

late-season size than flowering time (Table 1). All traits are in
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Table 1. Posterior mean MCMC estimates of Gzw, for the control and competition treatments, with 95% HPD intervals.

Flowering time Mid-season size Final size Relative fitness

Flowering time 12.5952 (7.66, 18.43)
Mid-season size 3.9793 (−16.28, 21.62) 189.67 (94.26, 295.19)
Final size 88.4242 (10.32, 169.53) 275.7041 (−69.4, 608.17) 3304.48 (1573.65, 5246.04)
Relative fitness −1.2484 (−1.90, −0.70) −0.3290 (−2.56, 2.35) −8.6367 (−20.93, −0.27) 0.2099 (0.13, 0.31)
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Figure 2. Graphical portrayal of the response to selection for

flowering time, mid-season size, and final size. We estimated us-

ing genetic selection gradients calculated from Bayesian methods

(βg = G−1sg) or regression on line means. Predicted responses to se-

lection using regression were obtained by solving �z = Gβg. Error

bars indicate upper and lower 95% HPD intervals for Bayesian-

MCMC estimates, while they are not presented for the regression

based estimates because of the multistep nature of the estimate.

(A) Flowering time, (B) mid-season, and final size.

original units, and thus variances are in units of flowering time2,

number of leaves2, and are dimensionless for relative fitness. Ge-

netic covariances between traits and fitness were negative, indi-

cating selection against all traits (Fig. 2). Interpreted at face value,

these estimates predict an evolutionary response of flowering time

of −1.24 days (95% HPD: −1.9, −0.7), little change in mid-

season size (−0.33 leaves,: −2.56, 2.35), and a significant de-

crease in late-season size of −8.6 leaves (−20.93, −0.27). The

potential consequences of evolutionary responses of ∼1 day can

Table 2. Two methods for estimating βg.

Estimation method

Regression
G-matrix estimate (line means)

Flowering time −0.09892
(−0.1316, −0.0729)

−0.1075
(−0.1331, −0.0819)

Mid-season size 0.0005
(−0.0086, 0.0092)

0.0006
(−0.0063, 0.0077)

Final size 0.000057
(−0.0023, 0.0023)

0.0002
(−0.0015, 0.0020)

For regression, estimates are shown for regression of relative fitness on the

three phenotypes using either individual line means. For matrix operations,

we estimated βg as G−1sg. Confidence intervals (95%) for regression coef-

ficients are 1.96 × SE, whereas for matrix operations they represent the

upper and lower bound of the 95% HPD. Significant estimates are shown

in bold.

be judged by comparing it to estimates of β (approximately −0.1,

see below). An individual or genotype with a flowering time of

1–1.24 days earlier than the mean phenotype of the population

(where relative fitness by definition equals 1) would have had a

10–12% (range ∼8–16%) advantage in relative fitness.

SELECTION GRADIENTS

Selection gradients estimated from linear regression (using inbred

line means) or from matrix operations (G−1sg) were highly similar

to each other and between phenotypic and genetic data (Table 2;

Supporting Information). The correspondence between βg esti-

mated with linear regression and solving G−1sg is notable given

that the sample sizes for line means were moderate (maximum

of N = 12), and as such the line means also reflect within-line

components of genetic variance (Arnold 1981; Via 1984) as well

as noise. Consequently, inbred-line or family-mean regression co-

efficients only approximate true genetic covariances and selection

gradients (see Rausher 1992, Appendix 4).

As described previously (Simonsen and Stinchcombe 2010),

selection significantly favored early flowering. There was no sig-

nificant selection on mid-season or final size. The absence of a

significant selection gradient for final size illustrates the benefits
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of partitioning the contribution of direct and indirect selection.

A significant evolutionary response was predicted (−8.6 leaves,

95% HPD: −0.27 to −20.93 leaves) despite the fact that there

was little evidence of a significant selection gradient for this trait

(Table 2, Supporting Information). The predicted correlated re-

sponse to selection was likely driven by strong selection on flow-

ering time and its positive genetic covariance with final size.

We detected little difference in selection gradients depend-

ing on whether we used Inverse-Wishart or parameter-expanded

priors (Supporting Information). For example, for selection on

flowering time, the maximum range in estimates depending on

estimation methods was 0.011. By contrast, the standard error

of the regression coefficient from a regression using line means

was 0.013. For the present data at least, differences in selection

gradients introduced by the choice of prior are small in magnitude.

Discussion
Our analysis of predicted responses to selection revealed two

major results: (1) application of a combined approach to the sec-

ondary theorem and estimation of selection gradients allowed us

to distinguish direct and indirect predicted evolutionary responses,

in a framework allowing the estimation of uncertainty in parame-

ter estimates, and (2) even after placing uncertainty on both G and

measures of selection, we still obtained significant predicted evo-

lutionary responses using an experiment with moderate sample

sizes achievable in many study systems.

DIRECT AND INDIRECT PREDICTED EVOLUTIONARY

RESPONSES

Building on Morrissey et al.’s (2010, 2011, 2012a) approach, we

have illustrated how the multivariate approach to estimating ge-

netic covariances between traits and fitness can be partitioned

into selection gradients, while using MCMC methods to esti-

mate uncertainty. Application of (4) enables direct selection on

individual traits be distinguished from indirect selection on the

other measured traits (Rausher 1992). The benefit of distinguish-

ing direct and indirect selection is illustrated by considering final

size in the present experiment: much of the response to selec-

tion, as predicted by its genetic covariance with fitness, is not

due to direct selection on final size per se (because the geno-

typic and phenotypic selection gradients for it are essentially zero;

Table 2, Supporting Information). Rather, the selection differen-

tial and predicted response to selection is due to correlated traits:

either flowering time or an unmeasured trait with a high genetic

correlation with flowering time. In this case, partitioning direct

and indirect selection leads to a different interpretation (selection

on phenology rather than overall size) from the STS approach,

changing the major biological conclusion concerning how selec-

tion acts on these traits. Formally, the proportion of the response

to selection caused by genetic covariances with other traits can be

estimated by calculating �z with and without genetic covariances

(Etterson and Shaw 2001; Smith and Rausher 2008; Kirkpatrick

2009).

Although some studies (e.g., Morrissey et al. 2010, 2012a)

have indicated differences in evolutionary responses using the sec-

ondary theorem approach (eq. 2) and the multivariate breeder’s

equation (3), these differences likely stem from the use of envi-

ronmentally biased phenotypic selection gradients (βp) rather than

any inherent differences between the equations or approaches, for

two reasons. First, with genotypic selection gradients �z is iden-

tical, regardless of the expression used to estimate it (substituting

the RHS of eq. 4 into 3 recovers eq. 2). Accordingly, estimates of

�z (and biological conclusions) will be identical between (2) and

(3) when genotypic selection gradients are used for (3). Second,

environmental covariances between traits and fitness appear to

be frequent (Price et al. 1988; Merila et al. 2001; Kruuk et al.

2002; Scheiner et al. 2002; Stinchcombe et al. 2002; Winn 2004;

McGuigan and Blows 2009; Bolund et al. 2011; McGuigan et al.

2011).

Although the omission of genetically correlated traits will not

change �z estimates obtained from (2), it will affect the partition-

ing of direct and indirect selection in βg using (4). Any interpreta-

tion of a difference between the way selection may be acting from

a comparison of βg and sg will be subject to the caveat that the in-

clusion of an additional trait to the analysis could well influence

how selection is partitioned (Lande and Arnold 1983; Rausher

1992). Phenotypic selection gradients can be biased by the omis-

sion of environmentally or genetically covarying traits, whereas

for genotypic selection gradients the problem is reduced: only the

omission of genetically covarying traits from the partitioning will

result in altered estimates (Rausher 1992). For traits like size or

competitive ability, heritable variation often leads to larger or bet-

ter territories, or more resources, which in turn enhance the trait

and fitness components. Experimental manipulations or common

garden experiments that eliminate the covariance between genetic

and environmental variance components for these traits are nec-

essary in concert with selection analysis (of whatever variety).

Although challenging to implement, prominent examples exist

(e.g., Simms and Rausher 1989).

Hadfield (2012) suggests caution in interpreting genetically

based estimates of selection and predicted evolutionary responses,

from either the STS or the selection gradient approach. His argu-

ment is that the STS conflates selection and inheritance, and as

such cannot predict responses to selection. The data analyzed here

were collected on a single generation, and consequently there was

selection but no inheritance. The accuracy of predicted evolution-

ary responses based on a single generation will depend on tem-

poral changes in aspects of the population such as demography,

immigration, environmental conditions, and mutation (Morrissey
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et al. 2010). A second complication that can arise is that failing

to detect nonzero genotypic selection gradients or differentials

could be because of either an absence of selection, or a lack of

genetic variance in the direction of selection (Blows and Hoffman

2005; Walsh and Blows 2009). The former indicates that the trait

does not directly affect fitness. In contrast, the latter indicates that

nonsignificant genotypic selection gradients or differentials may

reflect evolutionary constraints, rather than simply reduced sta-

tistical power. In the current data, mid-season and final size have

the largest genetic variances (and mean-standardized variances;

Simonsen and Stinchcombe 2010), and there is little evidence

of significant selection gradients or differentials for these traits,

using either genetic or phenotypic data.

An important point with any study characterizing selection

is the potential influence of invisible fractions (Grafen 1988;

Bennington and McGraw 1995; Hadfield 2008; Sinervo and

McAdam 2008; Mojoica and Kelly 2010). In brief, if a fraction

of the population dies before expressing the traits of interest, the

resulting estimates of selection will be biased by the omission of

an episode of selection on the trait, before it was even expressed.

Accordingly, while estimates of �z from equation (2) are unbi-

ased by the omission of correlated traits (Robertson 1966; Price

1970; Rausher 1992; Morrissey 2012a; cf. Etterson and Shaw

2001), both estimates of �z and βg will likely be affected by

invisible fraction problems. Hadfield (2008) suggests analytical

methods for evaluating this problem, taking advantage of relat-

edness between surviving and nonsurviving individuals (similar

to estimating across-sex genetic correlations). Mojica and Kelly

(2010), in contrast, used artificial selection experiments to detect

strong viability selection on flower size before it was expressed.

Future work on the extent of the invisible fraction problem, and

assessments of its quantitative importance, are clearly warranted.

UNCERTAINTY IN MICROEVOLUTIONARY

PARAMETERS

Placing uncertainty estimates on predicted responses to selection

has been an especially stubborn challenge. Although analytical

approximations exist (McCulloch et al. 1996), most attempts at

placing confidence limits on predicted evolutionary responses

have used bootstrapping and been limited to univariate traits (e.g.,

Galen 1996; Grant and Grant 2006; Franks et al. 2007), or have

considered uncertainty in only one set of parameters while holding

another constant (Smith and Rausher 2008; Stinchcombe et al.

2009).

An encouraging outcome from applying Bayesian-MCMC

methods to the case study data was that even after accounting

for uncertainty in both G and β, some estimates of �z could be

distinguished from 0, based on the uncertainty reflected in the

posterior distribution. Our results suggest some cause for opti-

mism that microevolutionary analyses can be successfully con-

ducted within a robust statistical framework with sample sizes

that are achievable in many empirical systems. We note, how-

ever, that our use of inbred lines may be a contributing factor

here. Inbreeding decreases genetic variance within lines and in-

creases the genetic variance exhibited among lines, and the hier-

archical statistical model for analysis has fewer levels than many

experimental breeding designs (e.g., half-sibs), all of which are

likely to decrease the uncertainty associated with estimates of G
and β.

Although Bayesian approaches are quite flexible for estimat-

ing uncertainty in evolutionary parameters (e.g., O’Hara 2008;

Ovaskainen et al. 2008; Hadfield 2010; Wilson et al. 2010, 2011;

Morrissey et al. 2012a,b; Aguirre et al. 2013) and their gen-

eral applicability to diverse experimental designs (e.g., inbred

lines, half-sibs, pedigrees, experimental evolution), other alter-

natives exist. A common intuition is that bootstrapping would

be useful, although it is difficult to implement in pedigree-based

or more complex experimental designs, where much effort has

been devoted to detecting selection and evolutionary responses

(e.g., Kruuk 2004). Another alternative would be to sample G or

Gzw repeatedly from the asymptotic covariance matrix of parame-

ter estimates from standard REML-based mixed model estimates

(Shaw et al. 1995; Shaw and Geyer 1997; Lau et al. 2014).

Conclusions
In summary, we have shown how to combine the merits of the STS

with the selection gradient approach, in a way that can be imple-

mented to provide confidence on predicted evolutionary responses

and genotypic selection gradients. Although only detailed for lin-

ear selection here, nonlinear selection on the genetic variance

can be directly assessed through the application of the nonlin-

ear version of the Robertson–Price Identity by a genetic analysis

of squared trait deviations (Delcourt et al. 2012). Collectively,

these approaches allow direct and indirect selection on individual

traits to be distinguished in the way originally envisaged by the

multivariate breeder’s equation (Lande and Arnold 1983), and fa-

cilitate hypothesis testing about the nature of selection, genetic

constraints, and evolutionary responses.
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