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The ability of a population to respond to natural selection will be determined by the patterns of genetic
variation and covariation in traits under selection. In the quantitative genetic framework, these patterns of
genetic variation and covariation are described by the G matrix, which for a given pattern of selection will
determine the size and direction of evolutionary responses. Several methods have been developed to evaluate
the nature of evolutionary constraints imposed by G, although this multitude of methods has never been
applied to a common data set to compare their strengths and weaknesses, or the similarity of evolutionary
inferences they produce. Here we compare several multivariate methods that calculate genetic constraint
using a quantitative genetic field study in the ivyleaf morning glory, Ipomoea hederacea. We focus on
a tractable number of traits (size at flowering, final size, and flowering time), which allows us to pair
multivariate quantitative methods with qualitative interpretations of both G and the pattern of natural
selection. In methods that rely on either the geometry of G or the multivariate orientation of G and the
pattern of natural selection (b), we found high levels of inferred constraint. In contrast, when one considers
how genetic covariances are likely to affect the rate of adaptation over very short timescales, we inferred
relatively low levels of constraint. Two consistent results emerge from our analyses. First, the inferences
about evolutionary genetic constraints from all of these metrics are very sensitive to whether traits are
unstandardized, standardized by the standard deviation, or standardized by the mean. In general, weaker
evolutionary genetic constraints are inferred for metrics utilizing a mean standardization. Second, the
discordance between methods that consider the geometric orientation of G and b and those that evaluate
how covariances affect the short-term rate of adaptation suggests that alternative constraint metrics might
be informative, depending on whether the goal is to evaluate adaptation in general or the evolution of
particular traits.
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Introduction

Understanding the evolution of correlated traits remains
one of the central goals in evolutionary ecology (Gardner
and Latta 2007). For example, correlations between ecologi-
cally important traits lie at the heart of theoretical explana-
tions for alternative defense strategies (van der Meijden et al.
1988; Fineblum and Rausher 1995), whether plants should
grow or defend (Herms and Mattson 1992), alternative life-
history strategies (Lande 1982; Roff and Fairbairn 2007), the
evolution of generalists and specialists and phenotypic plas-
ticity (Via and Lande 1985; van Tienderen 1991), male and
female fitness in hermaphrodites (e.g., Charnov et al. 1976;
Charlesworth and Charlesworth 1981), and the evolution of
drought avoidance strategies (Juenger et al. 2005; McKay
et al. 2008). Empirically, the dominant approach to detecting
correlations among traits has been quantitative genetics, in

which correlations between traits are measured as either ge-
netic covariances or correlations (Roff 1996, 2000; Lynch
and Walsh 1998).

The role of genetic covariances in the evolution of quanti-
tative traits can easily be seen from considering the equation
for the evolution of two traits:
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� �
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: ð1Þ

In equation (1), the left-hand side represents the evolutionary
change in the mean value of two phenotypic traits, 1 and 2.
These evolutionary changes can be predicted from the prod-
uct of the matrix G, which contains genetic variances on the
diagonal and genetic covariances on the off-diagonals, and
the vector b, which describes the strength of natural selection
on traits 1 and 2 (Lande 1979; Lande and Arnold 1983).
When genetic covariances between traits are nonzero—for in-
stance, because of the pleiotropic effects of single genes or
linkage disequilibrium between genes—the evolution of the
traits in question will not be independent. The evolutionary
consequences of nonzero covariances in equation (1) have
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been the primary theoretical motivator (either explicitly or
implicitly) of the vast majority of empirical quantitative ge-
netic studies of correlated traits.

Abundant data from the literature exist for the component
parameters of equation (1). For example, the heritabilities of
traits are frequently greater than 0; that is, G11 and G22 are
often nonzero (Mousseau and Roff 1987). In fact, estimates
of genetic variation in traits closely related to fitness are higher
than for other characters, when measured appropriately
(Houle 1992). Likewise, there are numerous estimates of ge-
netic correlations (i.e., G12 > 0; Roff 1996), and natural se-
lection (b) appears to be widespread, common, and strong in
natural populations (Kingsolver et al. 2001; Hereford et al.
2004). While these findings at face value would appear to
suggest that we have all the parameter estimates necessary to
solve equation (1), they paradoxically raise two difficult
empirical and theoretical challenges. First, the presence of
abundant genetic variation and strong natural selection
are difficult to reconcile with each other, since selection is
expected to reduce genetic variation (Johnson and Barton
2005). Second, there is accumulating evidence that microevo-
lutionary stasis is common, even when natural selection is
acting on genetically variable traits (e.g., Merila et al. 2001;
Kruuk et al. 2002). What resolutions exist to these chal-
lenges?

An emerging body of theoretical and statistical work sug-
gests that progress toward resolving these challenges can be
gained by considering the geometry encapsulated by equation
(1)—in other words, the relative magnitude of the elements
and the axes of variation described by the matrices and vec-
tors, their relative orientation in multivariate space, and the
influence of individual elements on evolutionary trajectories
(Dickerson 1955; Pease and Bull 1988; Schluter 1996; Blows
et al. 2004; Hine and Blows 2006; Blows 2007; Blows and
Walsh 2008; Hansen and Houle 2008; Smith and Rausher
2008b; Kirkpatrick 2009; for a review, see Walsh and Blows
2009). At their core, these methods seek to answer a handful
of questions about equation (1) that are simple to pose yet
difficult to answer: (1) Do the eigenvalues of G suggest that
there are as many independent axes of genetic variation as there
are traits, or are there combinations of traits for which there
is no genetic variation (i.e., eigenvalues of zero, and G is
singular)? (2) Is b favoring combinations of traits for which
there is abundant genetic variation, or is b aligned in multi-
variate space with combinations of phenotypic traits for
which there may be phenotypic variance but little to no ge-
netic variance—suggesting that perhaps no response should
be expected? (3) How do the genetic covariances in G alter
the relationship between the trait combinations favored by
selection and the resulting evolutionary response? Do genetic
covariances accelerate or constrain the rate of adaptation?
(4) How much of the evolutionary response is in the direc-
tion favored by natural selection? Answers to these questions
from diverse systems, traits, and life histories would go
a long way to evaluating competing hypotheses for the main-
tenance of genetic variation and the presence of microevolu-
tionary stasis.

One drawback to previous empirical approaches to these
problems is that the various metrics measuring the geometry
of equation (1) have rarely been applied to the same set of

data (see, e.g., Schluter 1996; Blows et al. 2004; Hansen and
Houle 2008; Smith and Rausher 2008b; Agrawal and Stinch-
combe 2009; Kirkpatrick 2009). Consequently, it has been
difficult to compare the strengths and weaknesses of different
metrics, the evolutionary inferences they produce, and
whether the various methods devised to answer the four
questions listed above often lead to the same conclusion.
Here we apply the most commonly used metrics of measur-
ing quantitative genetic evolutionary constraints to a single
data set, purposefully focusing on a small handful of traits
that allow multivariate methods to be paired with qualitative
interpretation of both G and b. In particular, we focus on
three traits in the annual vine Ipomoea hederacea (midseason
size, final size, and flowering time), for which we have spe-
cific a priori predictions about the nature of G and b. We ex-
pect midseason size and final size to be highly correlated
because of growth; similarly, relationships between size and
flowering time are expected for annuals, since individuals
that delay flowering can achieve larger size (Lacey 1986;
Bolmgren and Cowan 2008). Likewise, we expect that natu-
ral selection should favor larger size in annual plants (e.g.,
Callahan and Pigliucci 2002; Blair and Wolfe 2004) but that
flowering time should be under strong selection, depending
on season length (Inouye 2000).

Specifically, we ask the following questions: (1) What are
the patterns of G and b for midseason size, final size, and
flowering time for ivyleaf morning glory (I. hederacea), and
how are these affected by the presence of a closely related
competitor (Ipomoea purpurea) ? (2) What evidence, if any,
exists for evolutionary genetic constraints in this system, and
do different constraint metrics lead to the same inferences?
(3) Does ecological complexity—namely, the presence or ab-
sence of a competitor—alter the degree of evolutionary ge-
netic constraint?

Methods

Study System

Ipomoea hederacea (L.) Jacquin (Convolvulaceae), ivyleaf
morning glory, is an annual weedy vine, typically growing in
agricultural fields, disturbed habitats, and cultivated gardens.
Whether ivyleaf morning glory is native to North America is
uncertain, but herbarium specimens indicate that it has re-
sided in North America for at least 150 yr (Bright 1998), and
early floras indicate that it has been present since the 1700s
(Pursh 1814). Ivyleaf morning glory typically germinates
from May to August. Flowering in the field typically begins
4–6 wk later and continues until the kill frost in the fall;
growth and leaf production continue after flowering has been
initiated. In greenhouse and field conditions, flowering is ac-
celerated by short days (Greulach 1943) and drought (J. R.
Stinchcombe, personal observation). Seed capsules (contain-
ing 1–6 hard-coated seeds) usually take 4–6 wk to mature
and dehisce (Bright and Rausher 2008). Ivyleaf morning
glory is largely selfing (average ¼ 63%; from Hull-Sanders
et al. 2005). Despite high selfing rates in its current range,
Hull-Sanders et al. (2005) found relatively little population
differentiation (average FST ¼ 0:035 for 11 populations in
Alabama) and hypothesized that agriculturally mediated seed
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dispersal was a major source for gene flow. The competitor,
Ipomoea purpurea, was chosen because it typically occurs in
sympatry with I. hederacea populations in the southeastern
United States (Smith and Rausher 2007) and it has a similar
range distribution (USDA 2009).

Experimental Design

Our field experiment utilized inbred lines of I. hederacea,
which were selfed in the greenhouse for three generations. Af-
ter three generations of selfing, 93.75% of initially heterozy-
gous loci will be homozygous. The variation and covariation
among our inbred lines will approximate the total genetic vari-
ation and covariation among traits for highly selfing popula-
tions of I. hederacea, although it will be less accurate for
mixed-mating populations. (We note that the high selfing rates
of I. hederacea suggest that additive genetic variance and co-
variance estimates from a typical paternal half-sib design
would be of questionable relevance to natural populations.)

The inbred lines we used were originally collected from six
subpopulations of the Piedmont region of North Carolina. We
included lines from multiple populations in an attempt to in-
clude a representative sample of the variation typically found
in several subpopulations and to expand the range of pheno-
typic variation included in our study. Because we used lines
derived from several subpopulations, the matrix we estimated
is more analogous to Gw, a single, common genetic variance-
covariance matrix for all populations (see Zeng 1988; Cheno-
weth et al. 2010). The geometry of G likely differs between
subpopulations as a result of several evolutionary forces, in-
cluding selection, drift, and mutation. Variation among the
inbred lines within populations represents total genetic varia-
tion (additive and nonadditive genetic components) along
with maternal effects. However, in highly selfing species, selec-
tion acts on both additive and nonadditive genetic variation
(Roughgarden 1979). We attempted to equalize maternal en-
vironmental effects among lines by growing parental plants
in the greenhouse under common conditions, germinating ex-
perimental plants simultaneously, and then growing them in
the greenhouse under common conditions for 10 d.

Twenty-four individuals from each of 50 inbred lines of I.
hederacea (n ¼ 1200) and competitor individuals, I. purpurea
(purchased from American Meadows, Williston, VT), were
germinated in the greenhouse on June 12 and transplanted
into a recently plowed and disked old field at the Koffler Sci-
entific Reserve (http://ksr.utoronto.ca; 44�039N, 79�299W), north
of Toronto, Ontario. We purchased competitors from seed
suppliers because we hypothesized that a horticultural variety
that had potentially been artificially selected for growth and
increased flowering could impose stronger competition on
focal I. hederacea.

Plants were transplanted on June 22 in a randomized,
blocked design, with 1.5 m between rows and columns of
plants. Each block (n ¼ 6) received four randomly distributed
replicates of each inbred line, two of which were randomly
assigned to the competition treatment. Seedlings of I. purpurea
were randomly selected and transplanted 15 cm away from
I. hederacea the next day. To evaluate the possibility that
some transplants varied in condition as a result of maternal
environmental effects, we tested for variation among our

lines in open leaf number at the time of transplant. We failed
to detect any variation among our lines (line effect, x2 ¼ 0,
P > 0:99), suggesting that maternal environmental effects
were equalized among experimental plants.

Two weeks after transplant, we removed all nonexperimen-
tal vegetation within 0.5 m; weeding was done only once.
Each experimental plant was provided with a 2-m bamboo
stake to twine around. Throughout the summer and fall, we
measured four variables for each individual I. hederacea: post-
flowering size (open leaf number in mid-August), final plant
size (open leaf number in mid-September), date of first flower,
and viable seed production. We collected seeds until a killing
frost (October 28) ended the experiment. On the basis of a via-
bility assay of 30 randomly selected frost-damaged seeds, total
viable seed production consisted of the sum of viable seeds
plus 16.7% of frost-damaged seeds.

Statistical Analysis

Calculating selection gradients b and g. Selection gra-
dients were calculated from genotypic data rather than
phenotypic data to minimize confounding effects due to envi-
ronmental variation (Rausher 1992); this approach sacrifices
statistical power to avoid environmentally induced covari-
ances (Stinchcombe et al. 2002). We estimated inbred line
means for both size traits, flowering time, and fitness as least
squares means from fixed-effect ANOVAs that included treat-
ment, block, and inbred line (nested within source popula-
tion). We elected not to use best linear unbiased predictors
(BLUPs) because they have several undesirable properties for
use in the estimation of selection gradients (see Postma 2006;
Hadfield 2008; Hadfield et al. 2010). We estimated relative
fitness in each treatment by dividing our fitness estimates by
the mean within each treatment (i.e., each treatment w ¼ 1).

Selection gradients were estimated separately within each
competitive treatment. We estimated standard linear (b,
directional) and nonlinear (g, disruptive, stabilizing, cor-
relational) selection separately from partial regression coef-
ficients in first- and second-order polynomial regressions
(Brodie et al. 1995). For linear regressions, all variance infla-
tion factors were <3, suggesting little multicollinearity. For
quadratic regressions, we found high variance inflation fac-
tors associated with our estimate of quadratic selection on fi-
nal size in the competition treatment (10.57) as well as for
correlational selection on midseason and final size in both
the control and the competition treatments (11.75 and
13.61, respectively). However, for both quadratic regressions,
the maximum condition index was 8.02, below the number
suggested where regression estimates will be affected (10;
Belsley et al. 2005). Convex (negative coefficient) or concave
(positive coefficient) coefficients are interpreted as stabilizing
and disruptive selection, respectively, only if a stationary
point is present (Mitchell-Olds and Shaw 1987). We doubled
quadratic regression coefficients for individual traits (but not
cross products) to match the original g matrix from Lande’s
(1979) equations (Stinchcombe et al. 2008). Preliminary
analyses indicated nonnormal residuals, so we used boot-
strapping to estimate uncertainty in selection gradients. To
obtain 95% confidence limits for each selection gradient, we
bootstrapped the residuals of each multiple regression model.
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In brief, we resampled the residuals of the multiple regression
with replacement, added these to predicted values of the mul-
tiple regression, and performed the regression again 1000
times (for an overview, see Stine 1989).

Genetic variation in plant traits. We used univariate mixed-
model ANOVA (Proc Mixed, SAS Institute) to determine the
presence of genetic variation in flowering time and plant size
traits. To do this, we analyzed models of the following form:

trait ¼ m þ block þ population þ treatment

þ line populationð Þ þ block 3 line populationð Þ

þ treatment 3 line populationð Þ þ e;

where m is the grand mean or intercept of the model (fit by de-
fault in most statistics packages); terms involving inbred line
are random effects; and source population, treatment, and
block are fixed effects. We included block as a fixed effect be-
cause our spatial blocks were not chosen at random, and our
goal was not to generalize about spatial variation based on
them. P values of random effects were calculated from one-
tailed likelihood ratio tests, comparing models with and with-
out the random effects. We interpreted significant inbred line
effects as evidence of total genetic variation (additive and non-
additive), indicating a source of heritable variation.

Calculating G matrices. We estimated genetic covariances
between traits by fitting a multivariate model including all
traits (flowering time, plant size immediately after flowering,
and final plant size), accounting for the fixed effects of block;
as before, line was nested within source population. We
tested whether genetic covariances differed from 0 with like-
lihood ratio tests in which the covariances were individually
constrained to equal 0. Likelihood ratio tests follow a mixture
of v2 distributions when a parameter is held at a boundary
constraint (e.g., a variance held to 0; Self and Liang 1987),
although this does not apply to covariances held to 0. We
present estimated standard errors for all G matrix elements,
although we caution that these are based on large-sample,
asymptotic theory.

To ensure that the G matrix used for further calculations
was positive definite, we used a full-fit factor analytic model
with nonstandardized traits (Proc Mixed, type ¼ FA0(3)). The
G matrix from this model was subsequently used for the Smith
and Rausher (2008b), Schluter (1996), and Blows et al.
(2004) methods. For Hansen and Houle’s (2008) method, the
same G matrix was standardized by the phenotypic means for
each trait. A different matrix was constructed for Agrawal
and Stinchcombe’s method. In their method, G is represented
by trait heritabilities on the diagonals and genetic correlations
on the off-diagonals. The heritabilities (diagonal elements) of
G were calculated using standardized traits in a factor analytic
model (type ¼ FA0(3), Proc Mixed), while genetic correlations
were calculated directly from the genetic variances and covari-
ances of the traits.

Evaluating Genetic Constraints

For both the competition and the control treatment,
we applied several well-known metrics designed to measure

multivariate evolutionary constraints. We do not apply hy-
pothesis testing to any of the metrics to test whether these
estimates differ from each other or 0, since methods for do-
ing so are undeveloped for almost all of them. Moreover, our
primary interest is to compare the performance of each
method when applied to a common data set of tractable size
and interpretability, rather than to compare any particular
metric to a null distribution. As such, the data from our ex-
periment serve as a common frame of reference to compare
the methods themselves.

Angles Approach: Schluter and Blows’s Method

The first formal method that incorporated multiple traits
(more than two) was developed by Schluter (1996). Schluter
(1996) hypothesized that evolution was most likely to pro-
ceed along the axis of greatest genetic variation in G (re-
ferred to as gmax, or principal component 1 [PC1] of G), or
the genetic line of least resistance. Thus, evolutionary con-
straint can be measured as the angle (u) between gmax and b:
the larger the angle, the larger the genetic constraint. Blows
et al.’s (2004) method is similar but also calculates the cosine
between b and multiple eigenvectors of G to explore how
multiple dimensions of G are oriented relative to selection.
Likewise, they describe methods for comparing the orienta-
tion of G to g, the matrix of stabilizing and disruptive selec-
tion gradients. Because both of the advanced methods of
Blows et al. (2004) require using less than one-half of the
PCs (of either G or g) and we have only three phenotypic
traits, we did not implement them. However, we did estimate
the angle between G and b and the angle between G and g

as suggested by Arnold et al. (2001) and implemented by
Blows et al. (2004). As with all vector comparisons, angles
were calculated using normalized PCs and vectors.

Angles Approach: Smith and Rausher’s Method

We calculated genetic constraint using Smith and Rausher’s
(2008b) angles approach (see method 2 in Smith and Rausher
2008a). Smith and Rausher (2008b) calculated three measures
of genetic constraint with respect to linear selection. The first
calculates the angle (u1) between b and the predicted re-
sponse, Dz (see also Blows and Walsh 2008). The predicted re-
sponse to selection will deviate from b because of the effects
of genetic covariances between traits and unequal genetic vari-
ances in traits; the larger the angle, the larger the difference
between the evolutionary response and the combination of
traits favored by selection. The second compares the predicted
response to selection with and without genetic covariances be-
tween traits, measured as the angle (u2) between the response
with the observed variances and covariances (Dz) and the re-
sponse that would have occurred in the absence of genetic co-
variances (Dznc). The final angle (u3) focuses on contribution
of unequal genetic variances in the traits by comparing the an-
gle between b and the predicted response to selection in the
absence of genetic covariances, (Dznc).

Magnitude Approach: Hansen and Houle

Hansen and Houle (2008) introduce two measures of mul-
tivariate evolvability and constraint, respondability (r) and
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evolvability (e). Qualitatively, respondability measures the
predicted magnitude of change of the mean trait values in the
next generation relative to the selection gradient. Mathemati-
cally, this is simply represented as the norm of the response
vector relative to the norm of b; that is,

r bð Þ ¼ jDzj
jbj : ð2Þ

Evolvability, in contrast, measures how much of the response
to selection is in the direction of selection, and it corresponds
to the length of the projection of Dz onto b. Following Han-
sen and Houle (2008), we estimated evolvability as

e bð Þ ¼ b0Gb

jbj2
; ð3Þ

where the prime indicates transposition. Because these met-
rics explicitly incorporate the magnitude of the elements of b
and G, it is essential that all data are scaled appropriately;
we followed their recommendation of a mean standardiza-
tion. Although these metrics differ from past approaches to
estimating genetic and evolutionary constraints, they have
several useful properties. First, the genetic line of least resis-
tance is the direction in multivariate space in which multivar-
iate evolvability is maximized (Hansen and Houle 2008).
Second, these metrics have a natural interpretation because
all of the data have been mean standardized: evolvabilities
can be interpreted as percentage or proportional changes in
traits when the mean-standardized strength of selection is
equal to 1 (Hansen and Houle 2008).

Rate of Adaptation Approach: Agrawal and Stinchcombe

While previous approaches directly compare the geometry
of either Dz, b, or PC1 of g to G, Agrawal and Stinchcombe
(2009) utilize the predicted change in fitness of the mean phe-
notype (DW zð Þ) with and without the effects of genetic corre-
lations among traits. Specifically, they estimate the fitness of
the mean phenotype as

DW zð Þ ¼ DzTb þ 1

2
DzTgDz ð4Þ

(Agrawal and Stinchcombe 2009). In this formulation, Dz is
estimated from the equation Dz ¼ Gcorrbs, where Gcorr is
a matrix with heritabilities on the diagonal and genetic corre-
lations on the off-diagonals and bs are selection gradients es-
timated from data with a mean of 0 and a variance of 1
(Agrawal and Stinchcombe 2009). Their index, rate of adap-
tation R, compares the predicted change in fitness with ob-
served genetic correlations, DWc, to the predicted change in
fitness when traits are assumed to be genetically uncorrelated
(setting all correlations to 0), DWnc, using the ratio

R ¼ DWc zð Þ
DWI zð Þ : ð5Þ

If R < 1, covariances are constraining the rate of adaptation,
and if R > 1, covariances between traits are accelerating the
rate of adaptation. This method is similar to Smith and

Rausher’s (2008b) approach but differs in two respects. First,
it measures the effects of genetic correlations in terms of how
fitness of the mean phenotype is affected, rather than in terms
of the angles between b and Dz. Second, it incorporates the ef-
fects of nonlinear selection and is also able to detect when co-
variances accelerate or slow the rate of adaptation.

Dimensions Approach: Kirkpatrick’s Dimensionality

Kirkpatrick’s (2009) index, as opposed to previous ap-
proaches, strictly considers the geometry of G without regard
to the direction of selection and the predicted response. This
method determines the effective number of dimensions, nD,
in a G matrix by measuring whether there is an even distribu-
tion of genetic variation explained by all eigenvalues. If most
of the genetic variation occurs in the first one or two dimen-
sions, the matrix is ill conditioned and will permit evolution
only in few dimensions. Consequently, Kirkpatrick suggests
measuring nD as the sum of the eigenvalues of G divided by
the largest eigenvalue; that is,

nD ¼
Xn

i¼1

li

l1

: ð6Þ

If nD is close to 1, most of the genetic variation in G is ex-
plained by the first and largest eigenvalue, and the matrix
has an effective dimension of 1.

Effects of Data Standardization

The effects of data standardization can have important
consequences for whether an evolutionary metric is consid-
ered to be of small or large magnitude (e.g., Houle 1992;
Hereford et al. 2004; Hansen and Houle 2008). To evaluate
the sensitivity of the methods developed above to data stan-
dardization, we recalculated the angles metrics (Schluter and
Blows, Smith and Rausher) using mean-standardized esti-
mates of G and b. Because two of our traits are size related
(leaf counts), we expected the variance in the traits to scale
with the mean and to potentially lead to different evolution-
ary inferences of constraint when using mean-standardized
data. We also explored the sensitivity of the angles compari-
sons to using standard deviation standardized estimates of b;
estimates of this type are the most frequently used and re-
ported in the literature (e.g., Kingsolver et al. 2001; Siepielski
et al. 2009). However, if traits have different variances, con-
verting raw b estimates to standard deviation standardized
estimates will change the relative magnitudes of the elements
of b and thus potentially alter any angle-based constraint
metric that relies on a normalized estimate (i.e., |b|).

Results

Competitive Effects and Patterns of Trait
Variation and Selection

Phenotypic effects of competition on flowering time, size,
and fitness. The presence of an Ipomoea purpurea competitor
delayed flowering time in Ipomoea hederacea by less than half
a day but not significantly (F1; 1037 ¼ 3:47, P ¼ 0:14; table 1).
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The effects of competition substantially reduced midseason
size, final size, and seed set in I. hederacea (F1; 1088 ¼ 154:64,
P < 0:0001; F1; 1088 ¼ 264:77, P < 0:0001; F1; 1088 ¼ 34:52,
P < 0:0001, respectively; table 1). There was a weak positive
phenotypic correlation between flowering time and final size
(control, r ¼ 0:21, P < 0:0001; competition, r ¼ 0:18, P <
0:0001) and a weak negative correlation between flowering
time and midseason size (control, r ¼ �0:14, P ¼ 0:0004; com-
petition, r ¼ 0:06, P ¼ 0:13).

Genotypic selection on flowering time and size. Flower-
ing time was highly genetically variable, as was midseason
and final plant size (line(population) effect, x2 > 3:4, P <
0:0325 for each). The presence of genetic variation indicates
that a portion of the phenotype is heritable. Our multivariate
analysis suggests weaker evidence for genetic variation in
midseason size in the control treatment (note the large stan-
dard error), even though evidence for genetic variation in
this trait is significant in a univariate analysis.

Flowering time and final size were positively genetically
correlated in control (rg ¼ 0:58, P ¼ 0:0001) and competi-

tion (rg ¼ 0:31, P ¼ 0:073) treatments. Flowering time was
negatively correlated with midseason size in the control treat-
ment (rg ¼ �0:23, P ¼ 0:58) and uncorrelated in the compe-
tition treatment (rg ¼ 0:08, P ¼ 0:75). As expected, mid- and
late-season size were positively correlated in each treatment
(control, rg ¼ 0:44, P ¼ 0:48; competition, rg ¼ 0:97, P <
0:0001). Likelihood models constraining all of the genetic
covariances (and hence genetic correlations) to equal 0 pro-
vided significantly worse fit to the data (P < 0:0001 for each
treatment).

Estimation of selection gradients for each treatment re-
vealed patterns of strong linear selection favoring earlier
flowering time (b1; table 2), with only marginally significant
selection on one of the size traits (midseason size, b2, compe-
tition treatment; table 2). Comparison of bootstrapped confi-
dence intervals showed that linear selection on flowering
time did not significantly differ between treatments (table 2;
fig. 1). There was no significant nonlinear selection in either
treatment, perhaps because of the limited experimental
power of using 50 inbred line means for analysis (table 2).

Table 1

Effects of an Interspecific Competitor, Ipomoea purpurea, on Ipomoea hederacea on Inbred
Line Means of Flowering Time, Plant Size, and Fitness

Control treatment Competition treatment

Mean Phenotypic s Line s Mean Phenotypic s Line s

Flowering time (d) 72.68 4.51 3.47 72.99 4.77 3.86
Midseason plant size (leaf no.) 144.83** 40.33 13.91 120.20 31.78 12.45

Final plant size (leaf no.) 454.03** 148.68 61.85 338.12 118.70 56.47

Viable seed 204.56** 138.71 92.79 170.60 114.52 79.22

Note. The standard deviation of both phenotypes and inbred line means is also presented. Asterisks

indicate significant differences between competition treatments.

** P < 0:001.

Table 2

Linear and Nonlinear Selection Gradients (with Bootstrapped 95% Confidence Intervals [CIs])

Selection type Control CI P Competition CI P

Flowering time:
b1 �.377 (�.462, �.291) <.0001 �.377 (�.444, �.300) <.0001

g11 �.023 (�.179, .138) .60 .020 (�.050, .075) .19

Midseason size:
b2 .008 (�.078, .094) .87 .100 (.004, .199) .06

g22 �.099 (�.315, .134) .81 �.023 (�.115, .098) .79

Final season size:

b3 .016 (�.088, .111) .76 �.078 (�.178, .018) .15
g33 �.039 (�.332, .230) .80 .051 (�.109, .159) .76

Flowering time 3 midseason size:

g12 .044 (�.097, .180) .58 �.0720 (�.207, .072) .36

Flowering time 3 final size:
g31 .030 (�.152, .216) .77 .116 (�.080, .323) .32

Midseason size 3 final size:

g32 .110 (�.133, .071) .35 �.021 (�.201, .157) .85

Note. All traits have been standardized to m ¼ 1 and SD ¼ 1, and fitness is relativized to w ¼ 1 in each treatment. Linear se-

lection gradients (b) and associated P values were estimated in a model containing only linear terms, while nonlinear selection

gradients (g) and associated P values were estimated from a model containing linear and all quadratic terms. Quadratic regression
coefficients for individual traits (but not the cross-product term) and associated confidence intervals are doubled.
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Multivariate Estimation of Constraints

Angles I: Schluter and Blows. Comparing the major axis
of genetic variation in our experimental treatments to the
vector of selection gradients revealed a substantial angle be-
tween them. For example, in the control treatment, the angle
was 87.78�, while in the competition treatment, the angle
was 88.64� (appendix). These angles indicate that directional
selection favored combinations of traits for which there was
not much genetic variation. Inspection of G and b suggests
that this is likely because the majority of selection was on
flowering time, the trait for which there was the least genetic
variation (on the raw scale). These estimates were relatively
unaffected when b was estimated from traits with unit vari-
ance (89.81� and 80.18�, respectively).

The angle between PC1 of g and PC1 of G indicates the cor-
respondence between patterns of genetic variation and nonlin-
ear selection. PC1 of g indicates the combinations of traits for
which there is the most nonlinear variation in relative fitness,
that is, combinations of traits for which there should be the
most selective resistance (Arnold et al. 2001). PC1 of g defines
an axis of selective resistance; trait changes along this axis are
associated with the greatest curvature in the fitness surface
(i.e., the strongest stabilizing/disruptive selection). The major
axis of the nonlinear fitness surface for our data was poorly
aligned with the major axis of genetic variation in the traits
(88.71�, 82.88�; appendix). These data suggest that there is
genetic variation in our population that would permit changes
in the traits that would not be constrained by strong curvature
in the fitness surface. In contrast to the linear case, these esti-
mates changed markedly when g was estimated from traits
with unit variance (58.10�, 51.07�).

Angles II: Smith and Rausher. Smith and Rausher’s
(2008b) approach differs from Schluter’s (1996) in that it

considers the angle between b and Dz. The first angle (u1) be-
tween b and Dz reflects how unequal genetic variances and
covariances alter the response to selection compared with the
combinations of traits favored by selection. In both the con-
trol and the competition treatments, we found substantial an-
gles (82.66�, 73.84�; appendix). More than likely, these
angles were driven by substantial responses to selection on
final size despite weak selection on that trait—responses
driven by its large genetic variance and covariances with
other traits. The second (u2) evaluates the effects of genetic
covariances on the response to selection by estimating Dz
with and without genetic covariances present. In the control
treatment, we find a substantial angle (72.61�), while in the
competition treatment, this angle is much reduced (15.95�).
These data suggest that genetic covariances dramatically alter
the response to selection in the control treatment but not in
the competition treatment. The likely mechanism behind the
latter result is that the patterns of covariance between traits
in this treatment are similar to the directions of selection:
positively correlated traits are, in general, under the same
pattern of selection or very weak selection. The third angle
(u3) suggested by Smith and Rausher compares the angle be-
tween b and Dz in the absence of genetic covariances, thus
revealing the contribution of unequal variance in traits. We
found a minor angle in the control treatment (24.92�) and
a more substantial one in the competition treatment (63.61�).
Taken together, these data suggest that the deflections of the
evolutionary response from the combinations of traits fa-
vored by selection are driven primarily by genetic covariances
in the control treatment and unequal genetic variances in
traits in the competition treatment.

Evolvability and respondability. The estimates of mean-
standardized respondability and evolvability show a qualita-
tively different picture. To start, they are based on estimates of
G using mean-standardized data (table 3), which show a re-
markably different picture of trait variation. Respondability in
the control treatment equaled 0.00341, while in the competi-
tion treatment, it equaled 0.00344. The evolvabilities in these
two treatments are lower, reflecting the fact that correlations
among the traits deflect some of the evolutionary response
away from what was favored by selection: 0.002095 for the
control treatment and 0.002793 for the competition treatment.

The mean-standardized scale aids in interpretation of the
evolvabilities. For instance, these data indicate that if mean-
standardized selection on these traits were equal to 1, the ex-
pected change in the mean of the three traits in the direction
favored by selection would equal 0.2% (¼e bð Þ3 100). Over
a single generation, this is unlikely to lead to much of an evo-
lutionary response, although change of this magnitude sus-
tained over many generations is likely to be possible. To
illustrate, from the definitions of mean-standardized evolvabil-
ity, the response to selection for our three traits will equal

R ¼ 0:002 3 z; ð7aÞ

with the mean after selection equal to

Z� ¼ z 1 þ 0:002ð Þ: ð7bÞ

Iterating this for multiple generations (assuming e(b) remains
constant) leads to

Fig. 1 Selection gradient plots portraying directional selection for

earlier flowering time. Data points represent 50 inbred line means for each
treatment, with traits standardized to a mean of 0 and a variance of 1.
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Z tð Þ ¼ z 1 þ 0:002ð Þt: ð7cÞ

One can use equation (7c) to solve for the number of genera-
tions necessary to double or halve the traits (i.e., setting
Z tð Þ=z equal to 2 or 0.5); for our data, these calculations
suggest that three traits could be doubled or halved in 347
generations. Moreover, these calculations assume bm ¼ 1,
while for our data, selection on flowering time on the mean-
standardized scale was much stronger: bm ¼ �7:88. Put an-
other way, if selection on all three traits were as strong as it
currently is on flowering time, the three traits could be dou-
bled or halved in 44 generations.

Rate of adaptation: Agrawal and Stinchcombe. In con-
trast to previous methods, Agrawal and Stinchcombe’s ap-
proach evaluates genetic correlations on the basis of their
impact on the rate of adaptation. When applied to our data,
their method predicts that genetic correlations will slow the
rate of adaptation in the control treatment by 11% (i.e.,
R ¼ 0:889) and in the competition treatment by 8.5%
(R ¼ 0:925). Both of these numbers are similar to an analy-
sis of 45 articles from the literature (R ¼ 0:89; Agrawal and
Stinchcombe 2009). When strongly correlated traits are in-
cluded and only one or a few of them are under selection,
one will infer a large angle between b and gmax, even
though the correlation does not influence adaptation; in
these cases, one will infer a large angle and detect a small R
(Agrawal and Stinchcombe 2009). In these situations, R
will reflect the rate of adaptation measured by changes in
fitness, while u will reflect phenotypic evolution of the traits
in question.

Kirkpatrick’s dimensionality. The effective number of di-
mensions of G has the potential to constrain the long-term evo-
lutionary dynamics of these traits. Using Kirkpatrick’s method
for raw data, we estimated nD¼1:024 for the control treatment
and nD ¼ 1:007 for the competition treatment. These estimates
were relatively unaffected by scale, with nD ¼ 1:30 and nD ¼
1:11 for Gm (appendix). These data suggest that there is essen-
tially only one effective trait in our population (which is likely
a composite of what we perceive and measure as traits) and
that there are evolutionarily forbidden combinations of traits.
On the basis of the principle component loadings, this dimen-
sion is heavily influenced by final size, with lesser contributions
from flowering time and midseason size. Two features suggest
that these results are likely to be robust: they hold on the origi-
nal scale and for mean-standardized data (suggesting that
mean-variance relationships do not contribute), and we used
a factor-analytic estimation of G that required all three eigen-
values to be greater than or equal to 0. Our results are consis-
tent with Kirkpatrick’s (2009) findings, in that he found values
of nD less than 2 for five data sets that he reviewed.

Impacts of data standardization. To evaluate the conse-
quences of data standardization, we recalculated the angles
metrics estimates of both G and b that were mean standard-
ized (i.e., we applied principal component analysis to the Gm

matrix and normalized a bm vector before estimation of u).
For the Schluter and Blows approach, the deviation between
PC1 of Gm and bm was substantially lower in the control treat-
ment (76.24� for mean standardized vs. 87.78� for unstan-
dardized) but relatively similar in the competition treatment
(84.61� for mean standardized vs. 88.64� for unstandardized;

appendix). The reduced angle in the control treatment using
mean standardized data is likely because PC1 of Gm contains
greater trait loadings from flowering time and midseason size
(compared with PC1 of G) and flowering time is the trait un-
der strongest selection. The substantial angle, however, still
exists because final size is the most variable trait (even when
correcting for the mean) and is still under relatively weak se-
lection.

For Smith and Rausher’s (2008b) method, using Gm and
bm substantially changed the interpretation of the results. For
the control treatment, the angles reflecting the effects of the
covariances and unequal variances (u1) and the covariances
alone (u2) were both reduced (u1, 82:66�! 52:16�; u2,
72:61�! 55:45�), as was the angle reflecting only the effects
of unequal variances (u3, 24:92�! 3:41�; appendix). Thus,
in contrast to Schluter and Blows’s method, these data indi-
cate weaker inferences of genetic constraints imposed by the
effects of genetic covariances on the mean-standardized scale,
driven largely by genetic covariances and not simply the ef-
fects of unequal variances. For the competition treatment,
both u1 and u3 were substantially affected (73:84�! 35:80�;
u3, 63:61�! 21:35�; appendix). Collectively, these angles
from the competition treatment indicate that unequal genetic
variances and genetic covariances deflect the evolutionary re-
sponse away from trait combinations favored by selection to
a much smaller extent on the mean-standardized scale. In
other words, in the competition treatment, conclusions about
the degree of evolutionary genetic constraint are highly sensi-
tive to scale of measurement and relationships between the
mean and variance of traits.

Discussion

Evolution is both ecological and genetic processes, and our
experiment allows us to evaluate the ecological and evolu-
tionary effects of competition as well as the nature of multi-
variate evolutionary genetic constraints on evolution. Two
major results emerge from our experiment. First, we find per-
sistent and strong natural selection on flowering time in both
treatments, and despite strong ecological effects of competi-
tion, estimates of selection in the two treatments appear
qualitatively similar. Second, we find a complex pattern of
multivariate genetic constraints: metrics based on the geome-
try of equation (1) show consistent evolutionary constraints
(albeit highly sensitive to scale of measurement), while met-
rics based on the rate of adaptation show weaker evolu-
tionary constraints. These findings suggest that different
constraint metrics capture different aspects of evolutionary
constraints. Here we discuss both the biology of competition
and selection as well as our evaluation of evolutionary con-
straint metrics.

Competitive Effects and Selection on Size and Phenology

The presence of the interspecific competitor, Ipomoea pur-
purea, dramatically reduced size and fitness of the focal Ipo-
moea hederacea: final size was reduced by 26%, and viable
seed set was reduced by 17% (table 1). On the basis of past
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studies of Ipomoea, it is likely that these competitive effects
are driven by a combination of belowground competition for
resources and aboveground competition for light (Weiner
1986). Pollinator-mediated competition was unlikely in our
experiment since flowering phases did not overlap for both
Ipomoea species. Our expectation had been that size would
be under stronger selection in the competition treatment, be-
cause competition in plants is frequently size asymmetric,
leading to disproportionate advantages of large size (Weiner
1990). However, our results show that natural selection on
size is unaffected by the competition treatment. Thus, the
ecological consequences of competition alone are unlikely to
affect the evolutionary dynamics of aboveground plant size
by altering selection. Our results stand in contrast to Smith
and Rausher’s (2007, 2008a), who found that the presence of
I. purpurea not only reduced seed set in I. hederacea but also
significantly altered selection on floral morphology. These
data illustrate how ecological interactions between species
may not necessarily translate into changes in the evolutionary
dynamics of the traits that mediate or are affected by the in-
teractions (Inouye and Stinchcombe 2001).

Our study indicates that flowering time is an important
trait in determining plant fitness: there was strong direc-
tional selection to flower early in both competition treat-
ments, which is consistent with numerous other studies that
have measured selection on flowering time (e.g., Schemske
1977; Zimmerman and Gross 1984; Stewart and Schoen
1987; Campbell 1991; O’Neil 1997). The likely mechanism
behind this selection for early flowering is that we grew
plants collected from North Carolina north of their range
limit, where season-ending frosts are more common early in
the season and at longer day lengths. Support for this inter-
pretation comes from two lines of evidence. First, common
garden experiments for populations of I. hederacea col-
lected along a latitudinal gradient have found that northern
populations generally flower earlier then southern ones
(Klingaman and Oliver 1996; B. Campitelli and J. R.
Stinchcombe, unpublished data). Second, data from other
species suggest that flowering time is strongly influenced by
several abiotic cues, such as temperature, light quality, and
photoperiod (e.g., from Arabidopsis thaliana; Blazquez
et al. 2003; Searle and Coupland 2004; Lempe et al. 2005),
and other studies have identified a strong genetic response
in traits associated with photoperiod cues (Samis et al.
2008; Jackson 2009; Song et al. 2009). Both I. hederacea
and I. purpurea are short-day plants (Greulach 1943), and
as such, it is likely that photoperiodic cues are a strong con-
tributor to flowering time.

One caveat to our selection analyses is the potential influ-
ence of partial inbreeding. Willis (1996) noted that estimates
of selection can be biased by partial inbreeding; in essence, if
inbreeding lowers the values of both traits and fitness for
only some samples, a biased selection gradient will be ob-
tained. While all of our lines had been selfed for three gener-
ations in a common environment, we have no data on
whether they suffered from different levels of inbreeding
when originally collected. Two lines of argument, however,
suggest that partial inbreeding is unlikely to affect our re-
sults. First, theoretical work predicts that random mutational
effects should contribute to inbreeding depression to a far

greater extent than variation in individual inbreeding histo-
ries and that the consequences of variation in inbreeding his-
tory are likely too small to detect empirically (Schultz and
Willis 1995). Second, the reports of inbreeding depression in
I. hederacea from comparisons of selfed and outcrossed prog-
eny are themselves context dependent: while Hull-Sanders
et al. (2005) found inbreeding depression for germination
timing, biomass, and flower number, the presence and signifi-
cance of these effects varied between populations and disap-
peared for field-grown plants.

Evaluation of Multivariate Genetic Constraints

Our evaluation of multivariate genetic constraints revealed
several major findings and challenges, which we discuss in turn.
First, our ecological treatment that manipulated competition
lead to differential genetic constraints, even though an element-
wise comparison of G and b between the two treatments
would suggest few differences. Second, all of the constraint
metrics that we calculated showed appreciable sensitivity to the
underlying measurement scale, that is, whether traits were left
in the raw units, standardized by the mean, or standardized by
the standard deviation. Third, we detected a consistent differ-
ence between metrics based on the geometry of G and b and
those based on the rate of adaptation, suggesting that long- and
short-term constraints may differ.

Ecological effects on genetic constraints. Initial inspec-
tion of G and b suggests few differences between treatments,
and comparison of the bootstrapped confidence limits on b
suggests few significant differences in selection between treat-
ments. Similarly, although we did not perform formal G ma-
trix comparisons between treatments, the overall structure of
the matrices appears largely similar. Yet comparisons of how
genetic covariances and unequal variances in quantitative
traits affect the direction of evolution reveal substantial dif-
ferences between treatments. For instance, according to
Smith and Rausher’s (2008b) metrics, u2, which measures
how genetic covariances affect the response to selection com-
pared with when these covariances are absent, showed strong
differences between treatments (control vs. competition:
72.61� vs. 15.95� on the raw scale; 55.45� vs. 21.80� on the
mean-standardized scale), suggesting that the response to se-
lection in the control treatment is strongly affected by genetic
covariances. Likewise, comparisons of b and the response in
the absence of covariances (Dznc), which reflect the contribu-
tion of unequal variances in traits, revealed substantial differ-
ences between treatments on the original data scale (control
vs. competition: u3 ¼ 24:92� vs. 63.61� on the raw scale,
3.41� vs. 21.35� on the mean-standardized scale). These data
suggest that unequal genetic variances have a greater effect
on the evolutionary response in the competition treatment, at
least on the scale of original trait units. These data illustrate,
especially for u2, how small differences in the geometry of b,
G, and Dz—that is, the alignment between patterns of genetic
variation, covariation, and selection—can have substantial
effects on evolutionary responses.

Sensitivity to measurement scales. Our data also reveal
that inferences about evolutionary genetic constraints are
highly sensitive to the scale of measurement and that it is
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unlikely that a given scale of measurement will be a pana-
cea. For example, our analysis using Smith and Rausher’s
(2008b) approach, especially in the competition treatment,
was highly sensitive to whether we used data in raw units
versus in mean standardized units. In this case, the best ap-
proach is unclear. For Smith and Rausher’s (2008b) original
study, they investigated a series of size traits measured in
the same units (mm), such that the variances and covari-
ances of their traits of interest were on the same scale
(mm2). Accordingly, for their data, it would be straightfor-
ward to apply Hansen and Houle’s metrics on both the raw
and mean-standardized scales, since both the respondability
and the evolvability would be measuring evolution of a set
of traits of the same units. In contrast, for our data, using
the original units would have lead to evolvability and re-
spondability measures that were mixtures of leaf numbers
and days to flowering. Interpreting evolutionary responses
based on vector norms that are mixtures of trait units is ex-
tremely challenging (Hansen and Houle 2008; Stinchcombe
et al. 2009).

While the difficulties of considering the evolution of multi-
ple traits in different units is a major challenge, the use of
a mean standardization also poses challenges, as both Here-
ford et al. (2004) and Hansen and Houle (2008) emphasize.
Hereford et al. (2004) suggest that a bm equal to 1 is a natural
benchmark for the strength of selection, since a regression
of relative fitness on relative fitness will equal 1. However,
mean-standardized gradients can be greater than 1 (e.g., table
2; Stinchcombe 2005). The notion of traits under selection
more strongly than fitness itself poses an intuitive challenge
to many, especially if one has the world view that fitness is
under selection and that other ecologically important traits
that are under selection show varying degrees of correlation
with fitness (e.g., Orr 2009). Second, the mean-standardized
scale is not widely applicable to all traits that biologists may
wish to measure (Hansen and Houle 2008). While it may ap-
ply quite well to size-related traits that are on either a ratio
or log interval scale—implying that both ratios and differ-
ences are meaningful (ratio scale) or that ratios but not dif-
ferences are meaningful (log interval; for a fuller description,
see Hansen and Houle 2008)—its applicability for traits
such as flowering time is difficult. Phenological traits are of-
ten on an interval scale, which permits linear transformations
(addition and multiplication). While Hansen and Houle
(2008) note that mean standardization is allowed because in-
ferences about differences are unaltered, the actual values for
bm that one will calculate will be affected by the assumed ori-
gin of the traits. For example, if we had measured flowering
time as days elapsed since the last snowfall or since the sum-
mer equinox (rather than germination), we would have esti-
mated different bm. These considerations suggest that mean-
standardized estimates of selection and constraint for data
involving interval traits must be interpreted relative to their
original context (i.e., days since germination, snowfall, or
equinox).

Estimating uncertainty in genetic constraint metrics. In
addition to choice of measurement scale, estimating appro-
priate uncertainties for G, b, g, and all subsequent genetic
constraint metrics remains challenging. All of these elements
have been historically developed and calculated in separate

analyses: selection gradients through multiple regression, G
through multivariate and factor analytic models, and con-
straint metrics through matrix multiplication. Estimating un-
certainty in constraint metrics is especially challenging, since
they are calculated from estimates of multiple quantities,
each estimated with some error, and it is unclear whether
these errors are independent (or not) and how to propagate
error and uncertainty through the calculations (also see
O’Hara et al. 2008).

Two of the initially most apparent approaches—boot-
strapping and BLUPs—are potentially problematic. For
bootstrapping, it is unclear what should be sampled with re-
placement (individuals or quantitative genetic units, or
both), and evidence suggests that bootstrapping will tend to
lead to an overestimation of the number of significant eigen-
values of G (for details, see Hine and Blows 2006), which
would lead to biased estimates for metrics, such as Kirk-
patrick’s dimensionality. Similarly, although BLUPs have
several useful properties, recent work by Postma (2006) and
Hadfield et al. (2010) suggest that they are poorly suited for
use in estimating G or b, because they will frequently be
biased and anticonservative. Because the variance in BLUPs
is downward biased (Postma 2006; Hadfield et al. 2010),
bootstrapping based on BLUPs also underestimates the vari-
ance associated with random effects in mixed models (Mor-
ris 2002), that is, quantitative genetic variation in the
evolutionary context.

Recent work suggests that Bayesian approaches might al-
low some insight (Hadfield 2008; O’Hara et al. 2008; Had-
field et al. 2010). In particular, a single multivariate model
could be fit including all of the traits and fitness, allowing an
estimation of the genetic covariances between traits and be-
tween traits and fitness (e.g., Etterson and Shaw 2001). Im-
plementing these analyses in a Bayesian framework would
allow sampling from the joint posterior distribution of these
parameters and could be used to estimate confidence limits
on elements of G (Hadfield 2008). Similarly, to estimate a ge-
notypic b, the vector of genetic covariances between traits
and fitness (s) could be premultiplied by G�1 to obtain esti-
mates in the form of selection gradients rather than differen-
tials, again using the posterior distribution to estimate
confidence limits. By sampling from the posterior distribution
of a multivariate model including traits and fitness a large
number of times, it might be possible to estimate G, b, and
associated angle-based constraint metrics along with uncer-
tainty in the calculated metrics. One current limitation of
this proposed approach is that it is unclear how to estimate g

in this framework.
Interpreting constraint metrics. Two features emerged

from a comparison of constraint metrics. First, we observed
consistent differences in constraint metrics based on the
rate of adaptation, which revealed low levels of constraint
and constraint metrics based on the geometry of G and b,
which revealed high levels of constraint. These discrep-
ancies can occur when highly correlated traits exist in G

that are only under weak selection (Agrawal and Stinch-
combe 2009), as occurred in the current data. For this rea-
son, Agrawal and Stinchcombe (2009) advocated that
measures based on u and the rate of adaptation, R, both be
reported. We suggest that angle-based methods are more
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useful for determining the evolution of specific traits, while
the rate of adaptation approach offers a valuable comple-
ment if the interest in G and b is to predict whether genetic
covariances or correlations will inhibit evolution in re-
sponse to changes in the environment (e.g., Etterson and
Shaw 2001). Attempts to link observed G matrices to mac-
roevolutionary patterns of traits (e.g., Arnold et al. 2001;
Hansen and Houle 2008; Hohenlohe and Arnold 2008) are
probably more profitably pursued with angle-based ap-
proaches, since these metrics will provide a more explicit
consideration of specific phenotypes. Many of these ap-
proaches, of course, require assumptions about the stability
and evolution of G, an important unresolved issue (Steppan
et al. 2002; also see Chenoweth et al. 2010).

The second feature to emerge from our analysis of con-
straint metrics concerns the maintenance of genetic variation
and the likely evolutionary response. For example, consider-
ation of the dimensionality metric (nD) suggests that there is
effectively one dimension of multivariate space that could
lead to an evolutionary response, appreciably lower than the
number of ‘‘traits’’ we measured. Moreover, this dimension
of genetic variation is driven largely by final plant size, with
much weaker contributions from flowering time and midsea-
son size. Natural selection, in contrast, is acting much more
strongly on flowering time, a trait that makes a smaller con-
tribution to the effective number of dimensions. Consider-
ation of the angle-based metrics also supports this view:
selection is favoring combinations of traits for which there is
relatively little genetic variation, and genetic covariances sub-
stantially deflect the evolutionary response away from trait
combinations favored by selection. Given these data, the par-
adox suggested by equation (1) is less challenging: weaker
evolutionary responses would be predicted because of genetic
covariances and because selection is favoring trait combina-
tions for which there is relatively less genetic variation. Simi-
larly, the challenge of explaining why selection is not eroding
genetic variation is lessened by recognizing that selection

is acting on trait combinations already exhibiting lesser
amounts of genetic variation.

Conclusions

Despite numerous individual estimates of genetic vari-
ances, genetic correlations, heritabilities, and selection gradi-
ents (e.g., Mousseau and Roff 1987; Roff 1996; Kingsolver
et al. 2001), we have relatively few quantitative evaluations
of whether those estimates suggest strong multivariate ge-
netic constraints, why genetic variation is maintained (or
not), and how genetic correlations affect adaptation. As
Walsh and Blows (2009) emphasize, many of these con-
straints become apparent only in a multivariate framework.
Further empirical work from a diversity of study systems will
be necessary to evaluate the generality of our findings of low
dimensionality of G, a misalignment of gmax and b, and
a moderate constraint on the rate of adaptation due to ge-
netic covariances.
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Appendix

Supplementary Table

Table A1

Genetic Constraint Indices across Methods and Levels of Standardization

Method, implementation, and index G b Control Constraint? Competition Constraint? Control/competition

Schluter and Blows:

Standard:

u (b; gmax) G b 87.785 High 88.643 High .990

u (g; gmax) G g 88.708 High 82.868 High 1.070
Variant:

u (b; gmax) G bs 89.813 High 80.181 High 1.120

u (PC1 gð Þ; gmax) G gs 58.099 Midrange 51.074 Midrange 1.138

u (bm; gm;max) Gm bm 76.247 High 84.606 High .901
Smith and Rausher:

Standard:

u1 (b;Dz) G b 82.665 High 73.838 High 1.120
u2 (Dzc;Dznc) G b 72.606 High 15.945 Low 4.554

u3 (b;Dznc) G b 24.921 Low 63.615 High .392
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