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abstract: Understanding the patterns of genetic variation and con-
straint for continuous reaction norms, growth trajectories, and other
function-valued traits is challenging. We describe and illustrate a re-
cent analytical method, simple basis analysis (SBA), that uses the ge-
netic variance-covariance (G) matrix to identify “simple” directions
of genetic variation and genetic constraints that have straightforward
biological interpretations. We discuss the parallels between the eigen-
vectors (principal components) identified by principal components
analysis (PCA) and the simple basis (SB) vectors identified by SBA.
We apply these methods to estimated G matrices obtained from 10
studies of thermal performance curves and growth curves. Our re-
sults suggest that variation in overall size across all ages represented
most of the genetic variance in growth curves. In contrast, variation
in overall performance across all temperatures represented less than
one-third of the genetic variance in thermal performance curves in
all cases, and genetic trade-offs between performance at higher ver-
sus lower temperatures were often important. The analyses also iden-
tify potential genetic constraints on patterns of early and later growth
in growth curves. We suggest that SBA can be a useful complement
or alternative to PCA for identifying biologically interpretable direc-
tions of genetic variation and constraint in function-valued traits.

Keywords: continuous reaction norms, function-valued traits, genetic
variation, genetic constraints, growth trajectories, simplicity, thermal
performance curves, trade-offs.

Introduction

Understanding the patterns of genetic variation and genetic
constraints for complex phenotypes is a major challenge

for evolutionary biologists (Schluter 2000). For multivari-
ate traits, this is done in a quantitative genetic context, in
which genetic variation is represented as a genetic variance-
covariance (G) matrix (Lande and Arnold 1983).Gmatrices
are frequently quantified in terms of their component ei-
genvectors (principal components [PCs]) and eigenvalues
(variances) to identify “directions” (combinations of indi-
vidual traits) that differ in genetic variation. However, the
biological interpretation of the PCs is often difficult and
subjective (Blows 2007). Similarly, a function-valued (FV)
trait—a trait that is a function of some independent contin-
uous index, such as body mass as a function of age—can be
represented in terms of a genetic variance-covariance (G)
function (Kirkpatrick and Heckman 1989). The PCs of a
G function are similarly difficult to interpret, particularly
when the G function is estimated by nonparametric meth-
ods (Kingsolver et al. 2001). Parametric methods can be eas-
ier to interpret biologically but can have important statisti-
cal limitations: usually the appropriate parametric model
is unknown, and these methods assume that all phenotypic
and genetic variation—and constraints on that variation—
can be represented by a single parametric function (Kirk-
patrick and Heckman 1989; Kirkpatrick et al. 1990). An al-
ternative is to develop methods that quantify variation in
specific directions of biological interest for particular types
of FV traits. For example, the template modes of varia-
tion (TMV) method was developed to evaluate specific hy-
potheses about variation in thermal performance curves
(TPCs; Izem and Kingsolver 2005). This nonlinear ap-
proach is valuable for TPCs but cannot be directly applied
to other types of traits, functions, or index variables. We
lack a more general method that can identify biologically
interpretable directions for FV traits and that quantifies
the variation associated with these directions.
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In this study, we describe and illustrate a recent ana-
lytical method that can quantify variation in curves in terms
of simplicity (Gaydos et al. 2013). The approach, here called
simple basis analysis (SBA), quantifies variation in terms of
simple, biologically interpretable directions based on quan-
titative metrics for the simplicity of a curve. The method
was developed to visualize genetic constraints in curves;
here, we emphasize its use for identifying and quantifying
genetic variation in biologically informative directions. We
have four main goals. First, we briefly review principal
components analysis (PCA), showing how specific biolog-
ical patterns of variation among curves generate PCs with
specific shapes and how these shapes can reflect trade-offs.
We do this by representing a curve as a vector and show
how variation among curves can be quantified and visual-
ized in terms of the eigenvectors (PCs) of the associated
genetic variance-covariance matrix G. Second, we use a
case study of genetic variation in TPCs—clonal growth
rates as a function of temperature—for bacteriophage to
illustrate the direct parallels between PCA and SBA as al-
ternative means to study genetic variability. SBA is defined
in terms of a metric of simplicity and allows us to study
genetic variability in both simple and more complex di-
rections that can be easier to interpret than the directions
arising in PCA. Third, we analyze simplicity for 10 esti-
mated G matrices from diverse organisms for two differ-
ent types of FV traits: (1) TPCs for rates of population
growth, mass increase, or locomotion as a function of tem-
perature and (2) growth curves (GCs) of size as a function
of age. Our goal is to determine the patterns of genetic
variance in simple directions and whether these patterns
differ between TPCs and GCs. Fourth, we review the idea
of a “nearly null” subspace of G—directions in which
there is very little genetic variation—as a means of identi-
fying genetic constraints on evolution. We use SBA to ask
whether there are simple directions of genetic constraints
in our data sets and whether these constraints differ be-
tween TPCs and GCs.

Methods and Results

Hypotheses about Variation in Curves

Let us first briefly review the strengths and limitations of
PCA. PCA is a method for reducing the dimensionality
of complex, multivariate data. It decomposes the varia-
tion represented by a variance-covariance matrix into a
set of orthogonal PCs called eigenvectors. Any eigenvec-
tor defines a new variable equal to a linear combination
of the original variables. The method proceeds by finding
the vector of length 1, which represents a new variable that
explains the greatest possible variance in the original var-

iables. The resulting vector is the first eigenvector of the
variance-covariance matrix, and the new variable’s vari-
ance is equal to the associated eigenvalue. The method then
finds a second vector orthogonal to the first eigenvector
that yields another new variable that explains the greatest
amount of remaining variance, and so on. The full set of
eigenvectors is a set of basis vectors that accounts for all
of the variance in the original data, and the eigenvectors
of the variance-covariance matrix are uncorrelated. Typi-
cally, most of the variation in the original data can be de-
scribed by fewer eigenvectors than the number of original
variables, which can be used as a smaller set of basis vec-
tors, thus reducing the dimensionality of the problem. The
loadings on each eigenvector describe the contribution of
each of the original variables to the eigenvector. However,
biological interpretation of the eigenvector loadings is of-
ten challenging and subjective.
We will use a simple example to illustrate different pat-

terns of variation in biological curves and how they relate
to the loadings on PCs associated with that variation. Con-
sider a sample of genotypes from a bacteriophage popula-
tion in which we measure TPCs for fitness (e.g., population
growth rate as a function of temperature). The fitness of
each genotype is measured at a fixed set of (e.g., nine) mea-
surement temperatures. We are interested in visualizing
and quantifying variation in TPCs among genotypes rel-
ative to the sample mean (fig. 1A, 1C, 1E). We consider
three alternative and independent patterns of variation
in TPCs. The first pattern, called vertical shift (fig. 1A), re-
flects variation in overall fitness across all temperatures:
relative to the mean curve, a genotype with high fitness
at one temperature has high fitness at all temperatures.
A second pattern, called cooler-warmer (fig. 1C), describes
a trade-off between fitness at lower and higher tempera-
tures: in this case, individuals with relatively high fitness
at low temperatures have relatively low fitness at high tem-
peratures (and vice versa). A third pattern of variation in-
volves a trade-off between thermal breadth and maximal
fitness, called specialist-generalist (fig. 1E): here, individu-
als with higher maximal fitness at intermediate (optimal)
temperatures have relatively low fitness at both low and
high temperatures. These different hypotheses about vari-
ation have been widely explored by evolutionary physiol-
ogists interested in thermal adaptation (Huey and King-
solver 1989; Angilletta 2009). In our hypothetical example,
we envision these different patterns occurring in three dif-
ferent (imaginary) phage populations; in any real popu-
lation, all three patterns may occur simultaneously (see
below).
Suppose we consider the fitness of a genotype at each of

the nine measurement temperatures to be a distinct but
correlated trait. We can then view the TPC for each ge-
notype as a multivariate vector of nine correlated traits
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Figure 1: Examples of simple directions of genetic variation in thermal performance curves (TPCs) for fitness and the loadings on their
associated principal components (PCs; eigenvectors), based on the G4 phage case study (see figs. 2, 3). A, C, E, TPCs (fitness as a function
of temperature) for the mean curve (black) and for four clonal genotypes (other colors). B, D, F, PC loadings representing the variation in
TPCs among genotypes. In these simple examples, a single PC (eigenvector) accounts for all of the variation in each case. A, B, Vertical shift
variation. Loadings on the eigenvector are constant across all temperatures (a horizontal line), indicating overall variation in fitness among
genotypes across all temperatures. C, D, Cooler-warmer variation. The eigenvector has positive loadings at cooler temperatures and negative
loadings at warmer temperatures (or vice versa), indicating that genotypes with relatively high fitness at cooler temperatures have relatively
low fitness at warmer temperatures (and vice versa). E, F, Generalist-specialist variation. The eigenvector has positive loadings at interme-
diate temperatures and negative loadings at both cold and hot temperatures (and vice versa), indicating that genotypes with relatively high
fitness at intermediate temperatures have relatively low fitness at extreme cold or hot temperatures (and vice versa). See the main text for
further description.
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(Via and Lande 1985) and estimate the genetic variance-
covariance matrix G for this multivariate set of traits. A
standard way of understanding variation in multivariate
traits is via PCA of G. In our simple example, each of the
three different patterns of variation can be fully described
by a single eigenvector that explains 100% of the genetic
variation represented by G (Kingsolver et al. 2001, 2015a).
Now suppose that we plot the loadings of each eigenvec-
tor at each of the different measurement temperatures
(fig. 1B, 1D, 1F). For the vertical shift example (fig. 1B),
the loadings are identical (and nonzero) across all tem-
peratures: genotypes have relatively high (or low) fitness
at all temperatures. (Recall that a PC with all positive load-
ings is equivalent to one with all negative loadings—it is the
change in sign across temperatures that is relevant.) For
cooler-warmer (fig. 1D), the PC loadings are positive at
cooler temperatures and negative at warmer temperatures
(or vice versa), which indicates a reversal of relative fitness
at low and high temperatures. In this sense, there are cool-
and warm-adapted genotypes. Note that this pattern is re-
lated to but distinct from shifts in the position of the curve
along the temperature axis, termed horizontal shift (Huey
and Kingsolver 1989; Izem and Kingsolver 2005); horizon-
tal shift involves a nonlinear deformation that cannot be
fully represented by a single PC or other vector (Izem and
Kingsolver 2005). For the specialist-generalist case (fig. 1F),
the combination of positive loadings at intermediate tem-
peratures with negative loadings at both low and high tem-
peratures (or vice versa) indicates that specialist genotypes
with high relative fitness at intermediate temperatures have
low fitness at both low and high temperatures.

There are three key points from this simple example.
First, there is a direct correspondence between the pattern
of variation in curves and the loadings of the associated
PCs. Different patterns of variation can generate different
loadings with characteristic shapes (fig. 1). As a result, we
can view a PC as a direction of genetic variation. Second,
a plot of the PC loadings as a function of the index values
(in this case, temperatures) allows us to visualize directions
of variation among the curves. The loadings also provide
a natural way to identify trade-offs: a trade-off involves
changes in the relative rankings of fitness across temper-
ature and is reflected in a change in the sign of the PC
loadings across temperatures (fig. 1C–1F ). Third, we con-
structed this simple example so that the three PCs repre-
sent interpretable, orthogonal directions of variation in the
curves (fig. 1). Of course, in general this will not be the case
for the eigenvectors of a variance-covariance matrix. As we
illustrate in the next section, eigenvectors typically do not
have such simple loadings or biological interpretations; we
will use this to this suggest an alternative approach to de-
scribing variation in curves based on the “simplicity” of the
basis vectors.

Case Study: TPCs of G4 Phage

Data from real organisms rarely show the simple patterns
of variation described in figure 1. In this section, we use
data on TPCs for fitness of G4 phage to illustrate PCA
and SBA as alternative and complementary approaches
to characterizing genetic variation.
Knies et al. (2009) measured TPCs for population growth

rate (fitness) at nine temperatures between 177 and 417C
for 15 genotypes of G4 phage sampled from field popula-
tions (fig. 2). These data were used to estimate the genetic
(among-genotype) variance-covariance matrix G. A stan-
dard PCA of the G matrix shows that 98% of the total var-
iance is described by the first seven PCs (eigenvectors).
The loadings on the first six PCs (eigenvectors) are shown
in figure 3. The first PC (fig. 3A), explaining 73% of the
total variation, has small loadings at lower temperatures
and larger positive loadings at higher temperatures (above
327C). This suggests that there is smaller genetic variabil-
ity in fitness at low temperatures but greater genetic vari-
ability in fitness at higher temperatures, a pattern that can
be detected from the curves for each genotype (fig. 2). The
other PCs are more complex in terms of the patterns of
loadings on each eigenvector and are more difficult to in-
terpret biologically.
We suggest that PCA alone may not be the most useful

set of orthogonal basis vectors for quantifying and inter-
preting variation in TPCs and other FV traits. SBA pro-
vides an alternative and complementary set of orthogo-
nal basis vectors that are defined in terms of the simplicity
of the basis vectors (Gaydos et al. 2013). Appendix A
(apps. A–C are available online) gives a more detailed de-
scription of the similarities in and differences between
SBA and PCA. The method proceeds by finding the “sim-
plest” basis vector, as defined by some metric of the sim-
plicity of the vector (see below). The method then finds a
second basis vector, the simplest vector that is orthogonal
to the first basis vector, and so on. Just as with PCs, each
basis vector corresponds to a new variable that is a linear
combination of the original variables. The basis vectors in
SBA are determined by the number of dimensions (here,
the number of temperatures at which the traits are mea-
sured), the spacing between index values, and the metric
of simplicity. By applying SBA to a G or P matrix, we
can quantify the variance associated with each SB vector
to provide insight into the sources of variation in the data.
Similar to PCA, we can compute the SB score for each SB
vector for each genotype or individual; the SB scores pro-
vide a new set of traits. Unlike PC scores, however, the SB
scores for different SB vectors may be correlated (see be-
low), even though the SB vectors are orthogonal. This
method has recently been implemented in the R library
prinsimp (Cubranic et al. 2013; Zhang et al. 2014).
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Figure 4 presents the SBA results for the G4 phage data,
where the basis vectors are ordered from highest (SB1) to
lowest in terms of simplicity. The first three SB vectors
(SB1–SB3: see fig. 4) reflect the directions of variation de-
scribed in our toy example above (fig. 1): vertical shift,
cooler-warmer, and specialist-generalist. Vertical shift vari-
ation (SB1; fig. 4A) accounts for 32% of the total genetic
variance, suggesting that there is substantial variance in
fitness across all temperatures among these genotypes.
Cooler-warmer variation (SB2; fig. 4B) accounts for the sin-
gle greatest component of variance (40%), reflecting var-
iation in adaptation to cooler or warmer temperatures.
Specialist-generalist variation (SB3; fig. 4D) accounts for
11% of the variance, reflecting the trade-off between ther-
mal breadth and maximal fitness at intermediate temper-
atures. These three simple directions of variation account
for 83% of the total genetic variance of the TPCs. The re-
maining variance is accounted for by more complex basis
vectors (e.g., SB4–SB6; fig. 4D–4F).

Thus far we have discussed “simple” in terms of biolog-
ical patterns of variation (fig. 1), but we can define sim-
plicity in more precise mathematical terms. Metrics of
simplicity are used in statistical methods such as smooth-
ing and penalized regression, where more complex (less

simple) functions are penalized in fitting models (Green
and Silverman 1994). In developing SBA, Gaydos et al.
(2013) considered quadratic metrics of simplicity based on
first- and second-order differences, weighted by the dis-
tances between index values (to account for index values
that are unevenly spaced). In this article, we use first-order
differences; additional analyses with second-order differ-
ences (not shown) yielded qualitatively similar results.
Zhang et al. (2014) provide a description of the method
and its implementation in R (Zhang et al. 2014). Briefly,
let v be a vector that represents the evaluation of a func-
tion f(.) that is evaluated at K different values of t: vp fv1,
v2, ::: , vkg0 p f f (t1), f (t2), ::: , f (tK)g0. Our simplicity metric
is based on first divided differences:

Dp o
j

(vj 2 vj21)
2

tj 2 tj21

.

The measure D is a good approximation of the integral
of the square of the first derivative of the function f over
all values of t: D≈ E(df =dt)2. Note that if f has a constant
value for all values of t—that is, the graph of f is a hori-
zontal line—then Dp 0; nonzero values of the derivative
of f will, in general, produce larger values of D. To create
a measure that takes on larger values for simpler vectors
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Figure 2: Population growth rate as a function of temperature for 15 genetic clones of G4 phage. Data are from Knies et al. (2009).
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Figure 3: Principal component (PC) decomposition of genetic variation in thermal performance curves of population growth rate (fitness)
for G4 phage. The loadings (as a function of temperature) for each of the first six eigenvectors (PC1–PC6) are shown (blue lines). The per-
centage of genetic variation explained by each PC is also indicated.
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Figure 4: Simple basis (SB) decomposition of genetic variation in thermal performance curves of population growth rate (fitness) for G4
phage. The loadings (as a function of temperature) for each of the first six SB vectors (SB1–SB6) are shown (red lines). The percentage
of genetic variation explained by each SB is also indicated.
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v, we define the simplicity metric S following Gaydos et al.
(2013):

Sp 4v0v2minftj 2 tj21gD,

where v 0 is the transpose of v.
The simplicity metric S, based on first differences, takes

on values ranging from a maximum simplicity of 4 (where
the loadings for the SB vector are all equal, resulting in a
horizontal line) to a minimum of 0 (where the loadings
on the basis vector alternate between positive and nega-
tive values at different index values). Gaydos et al. (2013)
provide a general method for defining simplicity measures
based on other criteria for simplicity. In general, a vector’s
value of S is determined by the shape of the vector and the
number and spacing of the index values (Zhang et al. 2014).
In particular, the simplicity measure does not depend on
the G matrix. Therefore, the SB vectors are independent
of theGmatrix, since these vectors are calculated using only
the simplicity measure (see app. A). We order the SB vec-
tors from highest to lowest simplicity (fig. 4). For our case
study, the first three SB vectors (SB1–SB3) have S values
of 4, 3.9, and 3.5, respectively. Note that as simplicity in-
creases, the number of times the basis vector crosses 0—in-
dex values at which the loadings switch signs—decreases
(fig. 4).

Figure 5 summarizes the results of the PCA and the SBA
for the phage TPC data in terms of the simplicity and pro-
portion of variance associated with each eigenvector (PCA)
or SB vector (SBA). PCA orders eigenvectors in terms of
the proportion of variance explained (right to left in fig. 4),
regardless of simplicity; SBA orders basis vectors in terms
of simplicity, regardless of the proportion of variance ex-
plained (top to bottom in fig. 5). For our purposes, the ad-
vantage of SBA is that it allows us to study the variance
in simple, orthogonal directions that can be readily inter-
preted biologically (fig. 1). For the phage data, our analyses
suggest that 40% of the genetic variation (SB2; fig. 4) is
consistent with a cooler-warmer trade-off in which geno-
types with relatively high fitness at higher temperatures
have relatively low fitness at lower temperatures (fig. 1).
Similarly, 32% of the variance (SB1; fig. 4) is associated
with variation in overall fitness across all temperatures (ver-
tical shift; fig. 1). More than 70% of the genotypic varia-
tion in TPCs for fitness can be accounted for in terms of
two simple biological directions: vertical shift (SB1) and
cooler-warmer (SB2; figs. 1, 4).

Our results emphasize that PCA and SBA are alterna-
tive and complementary methods for quantifying varia-
tion in biological curves. For the phage data, the first PC
vector (73% of the total variation) indicates that there is
greater genetic variation in fitness at higher rather than
lower temperatures and that fitness at higher temperatures

is largely uncorrelated with fitness at low temperatures
(figs. 2, 3). However, the other PCs are rather complex
in shape and difficult to interpret in terms of genetic
trade-offs. In contrast, SBA reveals that there is substantial
genetic variation in two simple biological directions: ver-
tical shift and cooler-warmer (fig. 1). This illustrates the
advantages of SBA for interpreting patterns of variation.
Conversely, PCA is more effective than SBA in reducing
the dimensionality of the data: for example, a single PC
(PC1) is associated with 73% of the total variation, whereas
a single SB (SB2) is associated with 40% of the variation.
An important attribute of SBA is that, unlike PC scores,

SB scores between different SB vectors can be correlated.
For example, in the phage data set scores for SB1 are neg-
atively correlated with those for both SB2 (20.85) and SB3
(20.39); because these scores are for genetic clones, these
represent genetic correlations. This suggests that cooler-
warmer (SB2) and specialist-generalist (SB3) trade-offs will
reduce the rate of evolutionary response to selection on ge-
netic variation in overall fitness across temperatures (SB1).
In addition, scores for SB2 and SB3 are positively correlated
(0.62), suggesting that genetic variation for these two types
of trade-offs are not independent.

Patterns of Simplicity: Comparing TPCs and GCs

Our simplicity analyses with phage TPCs yielded two im-
portant results (figs. 4, 5). First, almost a third of the ge-
netic variance in TPCs reflects overall variation in fitness
across all temperatures (SB1). Second, more than half the
genetic variance reflects genetic trade-offs across different
temperatures, either between warmer versus cooler tem-
peratures (SB2) or between specialists versus generalists
(SB3). Do similar patterns occur in TPCs for other traits
or study systems or in other kinds of FV traits? To explore
this question, we consider thermal performances (TPCs)
or GCs from a number of study systems. These two types
of FV traits differ in several important ways. First, TPCs
and GCs typically differ in shape: TPCs have a single max-
imal performance at some intermediate (optimal) temper-
ature and decline to (or below) 0 at temperatures both be-
low and above the optimum (figs. 1, 2). In contrast, most
GCs start at a small initial size (at age 0) and then increase
to a maximum, final size; in some cases, size declines be-
low the maximum at older ages. In addition, changes in
size with age (the slope and curvature of the GC) are con-
strained by the maximal achievable growth rates for an or-
ganism. For these reasons, patterns of genetic variation
in GCs may be simpler and more constrained (see below)
relative to those in TPCs of physiological or ecological
rates.
We analyzed G matrices or data for genetic clones ob-

tained from published studies of TPCs (rate of fitness,
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growth, or locomotion as a function of temperature) or
GCs (size as a function of age). Each study measured per-
formance or size at six or more (up to 13) index values and
can provide either broad-sense or narrow-sense estimates
of G. We obtained five TPC and five GC data sets that in-
cluded a range of organisms from viruses and bacteria to
angiosperm and coniferous plants to insects and vertebrates
(table 1; see app. C for further details about the data sets).
This heterogeneous collection reflects the limited published
data currently available that meet our criteria—the vast ma-
jority of relevant studies consider only one to three index
values—but provide a useful starting point for exploring
these issues. All G matrices that were not previously pub-
lished, along with sample R code for assessing the variabil-
ity in estimates that depend on an estimated genetic covari-
ance matrix, can be found in the Dryad Digital Repository:
http://doi.org/10.5061/dryad.8v1f4 (Kingsolver et al. 2015b).1

SBA of these data sets reveal several interesting patterns
about simplicity and variation (fig. 6). First, recall that the
first SB vector (SB1), with a simplicity score of Sp 4 (larg-
est points in fig. 6), reflects vertical shift variation. For the
GC data sets (fig. 6B), SB1 is associated with 45%–72% of
the genetic variance, suggesting that much of the variation
in GCs reflects overall variation in size across all ages. In
contrast, for the TPC data sets (fig. 6A) SB1 is associated
with a much smaller fraction of the total genetic variance
(12%–30%), suggesting that variation in overall perfor-
mance across all temperatures is relatively limited. Second,
SB2 (second largest points in fig. 6) is associated with
10%–40% of the genetic variance for both GCs and TPCs.
This suggests that genetic trade-offs between size at early
versus later ages and between performance at cooler versus
warmer temperatures are common but do not explain the
majority of variation in GCs and TPCs. Third, complex di-
rections of variation (e.g., SB vectors with S< 3) are associ-
ated with a small fraction of the total genetic variance for
the GCs (less than 10% of the total in all cases). In contrast,
complex directions are often associated with a greater frac-
tion of the total genetic variance for the TPCs, ranging from
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Figure 5: Simplicity (scaled from 0 to 4) as a function of the proportion of genetic variance explained for the basis vectors for thermal per-
formance curves of population growth rate (fitness) for G4 phage. Results for both the principal component (PC) decomposition (blue points
and lines) and the simple basis (SB) decomposition (red points and lines) are given. The order of the basis vector is indicated by the size of
the point, from large (PC1 and SB1) to small (PC9 and SB9).
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10% to more than 70% for particular SB vectors. These re-
sults suggest that patterns of genetic variance in GCs are
simpler than those in TPCs (see “Discussion”).

Assessing variability in PCA and SBA of G requires in-
formation about the sampling covariances among the ele-
ments of G, not just the elements of G and their associated
standard errors. The underlying data for estimating G are
not available for many of our data sets, so we cannot assess
variability in all cases. We use a subset of one of the data
sets—GCs for Tribolium casteneum beetles (Irwin and Car-
ter 2013)—to illustrate an approach to assessing variabil-
ity (app. B). This is comprised of records at six selected
ages, treated as individual traits in a multivariate analysis
(rather than the FV approach taken by Irwin and Carter
[2013]). Estimating sampling variation then, in brief, in-
volves generating random samples from the estimated dis-
tribution of G, calculating the functions of interest, and
using their empirical distributions to determine their vari-
ability. Sampling error for the variance associated with each
basis vector was generally similar for PC and SB vectors for
this data set (fig. B1; figs. B1–B3 are available online). Es-
timated standard errors for the correlations between SB
scores were relatively small for correlations between SB1,
SB2, and SB3 but were larger for correlations involving
SB5 and SB6 (table B1; tables B1, C1 are available online).
The analyses also allow us to visualize variability in the
loadings of the PCs (fig. B2). Sample R code for assessing
the variability in estimates that depend on an estimated
genetic covariance matrix can be found in the Dryad Dig-
ital Repository: http://doi.org/10.5061/dryad.8v1f4 (King-
solver et al. 2015b). The reader should keep in mind that
an analysis without an assessment of sampling variability
must be treated with caution.

Nearly Null Space and Genetic Constraints

We can use PCA and SBA in combination to detect genetic
constraints and to describe them in biologically interpret-
able terms. Sometimes the genetic variation in a set of t
traits or in a FV trait measured at t index values arises
from a small number of traits—say from m (!t) combina-
tions of the original traits (Lande 1979; Mezey and Houle
2005; Hansen and Houle 2008). When this occurs, the re-
maining t2m “traits” can be viewed in a quantitative ge-
netic framework as arising from genetic constraints and
can be considered as phenotypic directions (combinations
of traits) in which there is little or no genetic variation:
phenotypic selection in these directions will lead to little
or no evolutionary response (Lande 1979; Kirkpatrick and
Lofsvold 1992). This set of phenotypic directions is sim-
ply the subspace spanned by the np t2m eigenvectors
of the G matrix with the smallest eigenvalues. This sub-
space contains little or no genetic variance; the subspace is
called the null (no genetic variance) or nearly null (little
genetic variance) subspace. Several authors have used PCA
to quantify the dimensionality of genetic variance and of
the null and nearly null subspaces (Mezey and Houle 2005).
Both statistical and demographic criteria have been pro-
posed to define the dimensionality of the nearly null sub-
space (Mezey and Houle 2005; Hansen and Houle 2008;
Gomulkiewicz and Houle 2009; Gaydos et al. 2013).
Gaydos et al. (2013) proposed the use of SBA as a means

of visualizing genetic constraints for FV traits—of finding
simple phenotypic directions within the nearly null sub-
space. The analysis has two steps. First, PCA of the G ma-
trix is used to determine two subspaces: a model subspace
(dimension m), which represents nearly all of the genetic

Table 1: Partitioning of genetic variance into model (198% of total genetic variance) and nearly null (!2% of total genetic variance)
subspaces, for data sets from different organisms

Dimensions, no.

Taxon Type Model Nearly null % null Trait Reference(s)

Pieris rapae TPC 4 2 33 Larval growth rate Kingsolver et al. 2004
G4 phage TPC 6 3 33 Population growth rate Knies et al. 2009
Escherichia coli TPC 8 3 27 Population growth rate Bronikowski et al. 2001;

Knies et al. 2009
Salmonella TPC 7 4 36 Population growth rate Bronikowski et al. 2001
Aphidius ervi TPC 6 1 14 Walking speed Gilchrist 1996
Impatiens capensis GC 1 5 83 Plant height Stinchcombe et al. 2010
Ambystoma macrodactylum GC 3 3 50 Body length Ragland and Carter 2004
Pinus taeda GC 2 5 71 Plant height Gwaze et al. 2002
Mus domesticus GC 4 3 43 Body mass Morgan et al. 2003
Tribolium castaneum GC 4 2 33 Body mass Irwin and Carter 2013

Note: The number of dimensions in the model and nearly null subspaces and the percentage of the total dimensions that are in the nearly null subspace
(% null) are indicated for each species. GC p growth curve; TPC p thermal performance curve.
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variance, and a nearly null subspace (dimension n), which
has very little genetic variance. Second, SBA is used to iden-
tify the simplest directions (SB vectors) in the nearly null
subspace on the basis of the simplicity metric S. The ratio-
nale is that these directions represent potential directions
of phenotypic selection that are genetically constrained;
these directions of selection may have straightforward bio-
logical interpretations (e.g., figs. 1, 4).

We apply this approach to our G matrices for TPCs and
GCs. In the absence of appropriate demographic informa-
tion for these traits and study systems to define the nearly
null space (Gomulkiewicz and Houle 2009), we choose the
dimensionality of the model subspace (m) as representing
at least 98% of the total genetic variance in G; the nearly
null subspace (dimension np t2m) then represents less
than 2% of the genetic variance. (Analyses using a 99% cut-
off give qualitatively similar results.) The results reveal an
interesting contrast in the relative dimensionality of the
model and nearly null subspaces for G matrices of TPCs
and GCs (table 1). The proportion of dimensions of G in
the nearly null subspace are consistently smaller for the
TPC data sets (14%–36%) than for the GC data sets (33%–
83%). This suggests that the structure of genetic variation
is of lower dimension and more strongly constrained for
GCs than for TPCs (see “Discussion”).

Directions in the nearly null subspace represent poten-
tial genetic constraints: directions in which phenotypic se-
lection will lead to little or no evolutionary response. We
can use simplicity analyses to identify and visualize the
simplest direction (basis vector SB1) in the nearly null sub-
space for each G matrix (fig. 7). For many of the TPC and
GC data sets, the “simplest” direction in the nearly null
subspace is quite complex, where the loadings change sign
three or more times across the range of temperatures
(TPCs) or ages (GCs). However, in some cases directions
in the nearly null subspace are rather simple and readily
interpretable as genetic constraints. For example, SB1 for
the GC of Impatiens capensis (fig. 7B, blue line) has large
positive loadings at early ages and negative loadings at late
ages (and vice versa). This predicts that strong selection for
relatively large size at early ages combined with selection
for relatively smaller size at final ages would result in lit-
tle evolutionary response. SB1 for the TPC of Pieris rapae
(fig. 7A, green line) has similar loadings and a similar inter-
pretation: strong selection for relative higher performance
at low temperatures combined with selection for relative
lower performance at high temperatures would result in
little evolutionary response. In addition, SB1 for the GCs
of Tribolium castaneum, Ambystoma macrodactylum, and
Pinus taeda have positive loadings at both early and late
ages and negative loadings at intermediate ages (fig. 7B).
This suggests that selection for relatively large size at early
and late ages combined with selection for relatively small

size at intermediate ages would result in little evolutionary
response. These results illustrate how simplicity analyses
of the nearly null subspace can help to identify and visual-
ize potential genetic constraints on continuous reaction
norms, GCs, and other FV traits.
Because the nearly null subspace is defined by using

PCA, the dimension of the nearly null subspace is estimated
with error, as are the loadings of SB vectors in the nearly
null subspace. By randomly generating 10,000 G matrices
using the T. castaneum GC data set, we can assess this var-
iability and also visualize variability in the loadings for the
simplest SB vector in the nearly null subspace (app. B,
fig. B3). The qualitative pattern of the loadings for the
two-dimensional nearly null subspace (changing from neg-
ative to positive to negative with increasing age) is similar
for most of the vectors, supporting the interpretation of a
genetic constraint on GCs in this system.

Discussion

A major motivation for developing and implementing
SBA is the difficulty of assigning biological interpretations
of the PCs of P and G matrices for FV traits (Gaydos et al.
2013). PCs can in some cases have straightforward inter-
pretations. For example, for sets of morphometric traits,
the first PC is often associated with overall size (Schluter
2000). For GCs, the first PC often explains a large fraction
of the total phenotypic and genetic variation and is often
associated overall variation in size or growth across all
ages (Kirkpatrick and Lofsvold 1992; Stinchcombe et al.
2010, 2012; Irwin and Carter 2013). Our analyses of GCs
support this pattern: overall variation in size at all ages ac-
counted for the majority of variation in each case (fig. 6).
If the first PC dominates and its loadings are all of the
same sign (i.e., the first PC is simple in shape), then PCA
and SBA will give similar qualitative results and insights.
In this case, PCA is preferable because PCs are by defini-
tion uncorrelated and PCA is more efficient in partition-
ing variation into its various components. Note that trade-
offs across age, temperature, and other index variables imply
that the PC or basis vector crosses 0 (fig. 1). In this sense,
SBA may be more useful in identifying and interpreting
genetic and phenotypic trade-offs (Kingsolver et al. 2015a).
A key rationale for the use of SBA is the notion that

mathematically “simple” directions of phenotypic and ge-
netic variation frequently have straightforward biologi-
cal interpretations. We have provided several examples for
performance curves—vertical shift, cooler-warmer, and
generalist-specialist directions (figs. 1, 4)—where this is
the case; Kingsolver et al. (2015a) provide analogous ex-
amples for GCs. These simple directions also have natural
interpretations for patterns of phenotypic selection across
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temperatures or ages. This is a primary motivation for SBA
of the nearly null space of G: to identify directions of phe-
notypic selection predicted to produce little or no evolu-
tionary response. However, not all directions of biological
interest are simple in the mathematical sense described
here. For example, horizontal shifts in the position of per-
formance curves or GCs represent nonlinear deformations
that are not readily described by linear methods like PCA
and SBA. Alternative approaches have been proposed and
developed to quantify variation in horizontal shift and
other nonlinear directions (Izem and Kingsolver 2005),
but these are restricted to specific types of curves (e.g., per-
formance curves).

In contrast to GCs, patterns of genetic variation in perfor-
mance curves and continuous reaction norms are typically
more complex and difficult to interpret, and the limitations
of PCA have been widely noted in this context (Gilchrist
1996; Kingsolver et al. 2001, 2004; Knies et al. 2009). In
our analyses of TPCs, overall variation in performance
(fig. 1A, 1B) accounted for only 10%–30% of the genetic var-
iation (fig. 6), and the loadings on the first PC changed sign
in each case. For our case study with G4 phage, most of the
PCs are quite difficult to interpret (fig. 3), whereas SBA sug-
gests that substantial genetic variation is associated with
three directions with straightforward biological interpreta-
tions (figs. 1, 4). The most valuable biological insight from
this analysis is that 40% of the genetic variation is associated
with a cooler-warmer trade-off in which genotypes with
high performance at cooler temperatures have relatively
low performance at warmer temperatures (fig. 1C, 1D). This
cooler-warmer finding is consistent with previous analyses
of these data using a semiparametric statistical method,
TMV (Knies et al. 2006, 2009). TMV quantifies variation
in TPCs in terms of parameters associated with vertical
shift, optimal temperature, and thermal breadth (Izem and
Kingsolver 2005). An important advantage of TMV is that
it can directly account for nonlinear patterns of variation,
including optimal temperature, which linear methods like
PCA and SBA cannot. However, the TMVmethod is specific
to performance curves and similarly shaped reaction norms,
and it cannot be readily generalized to other curve shapes or
trait types. SBAmay be applied to data for any FV trait mea-
sured at multiple index values, regardless of curve shape
(Gaydos et al. 2013). We note that curve shape—for exam-
ple, whether curves are monotonic or unimodal—can alter
the interpretation of the different SB vectors (for discussion,
see Kingsolver et al. 2015a).

SBA can also provide useful insights into genetic con-
straints, through simplicity analyses of the nearly null space
(Gaydos et al. 2013). Recent studies have explored the di-
mensionality of genetic variation and genetic constraints
for multivariate and functional-valued traits, including wing
shape in Drosophila (Mezey and Houle 2005) and GCs in

Tribolium beetles (Irwin and Carter 2013). Our analyses
focus on a complementary issue: whether there are simple
directions in the nearly null space representing patterns
of phenotypic selection that would lead to little or no evo-
lutionary response. Our results for GCs and TPCs identify
several potential cases of such constraints (fig. 7). For exam-
ple, the simplest basis vector in the nearly null space for
Ambystoma macrodactylum indicates a lack of genetic var-
iation for trade-offs between size at middle ages with size
at early and late ages (fig. 7B). As a result, selection favor-
ing small sizes (or low growth) at middle ages and larger
sizes (or faster growth) at early and late ages would gener-
ate little evolutionary response (Gaydos et al. 2013; Kingsol-
ver et al. 2015a). Interestingly, Ragland and Carter (2004)
were able to detect this same result using PCA (Ragland
and Carter 2004), supporting the notion that interpreta-
tion of patterns of genetic variation and constraint tend
to be more straightforward for GCs than for TPCs. Simi-
larly, the analyses indicate an analogous genetic constraint
on cooler-warmer variation for TPCs of Pieris rapae, such
that selection favoring slower relative growth rates at cooler
temperatures and faster relative growth rates at warmer
temperatures would generate little evolutionary response.
Whether simple genetic constraints are more common for
some types of organisms or traits remains an important
evolutionary question.
An important challenge in evaluating patterns of genetic

variation and constraint is the sampling error and statistical
uncertainty in estimates of G and its associated PCs and
eigenvalues (Aguirre et al. 2014; Stinchcombe et al. 2014).
We have illustrated one approach to assessing variability
for PCA and SBA (app. B), by generating many estimates
of G using the inverse of the information matrix (some-
times referred to as the asymptotic covariance matrix of co-
variance parameters; app. B). The required information
matrix is readily available from software like SAS, ASreml,
and Wombat (Meyer and Houle 2013). An alternate ap-
proach is to sample Gs from the posterior distribution of
G by using Bayesian methods (Hadfield 2010; Morrissey
et al. 2012; Aguirre et al. 2014; Stinchcombe et al. 2014).
Note that using PCA or SBA on a covariance matrix does
not require any distributional assumptions, but a multi-
variate normal assumption is needed to assess sampling var-
iability in G and in the variance associated with PCs and
SBs (see app. B).
Berner (2012) has argued that, because of sampling er-

ror and the imprecision in estimating PCs, experimental
studies will be more valuable than multivariate analyses for
understanding genetic constraints on multivariate traits.
However, recent selection experiments withDrosophila con-
firm that multivariate analyses of the nearly null subspace
can identify important constraints on short-term evolu-
tionary responses (Hine et al. 2014). Our analyses of vari-
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ability for the simplest SB vector in the nearly null subspace
(app. B, fig. B3) can identify qualitative patterns of genetic
constraint. However, inferences about genetic constraint
and the nearly null subspace will become increasingly prob-
lematic with decreasing sample sizes; for example, the G4
phage analyses are based on only 15 clonal genotypes.

Our analyses suggest interesting differences in patterns
of genetic variation for GCs and TPCs. For our data sets,
genetic variation in GCs was dominated by a single SB vec-
tor or PC explaining most of the total genetic variation,
representing overall variation in size or growth rate across
all ages; patterns of genetic variation in TPCs were more
complex and heterogeneous. Several factors may contrib-
ute to this pattern. First, GCs are frequently monotonic in-
creasing, whereas TPCs are unimodal and often asymmet-
ric. Second, size is the cumulative outcome of growth and
other processes over time, which may constrain the rate at
which size may change with age. Conversely, physiological
and locomotory rates may be more dynamic at shorter
timescales. Third, more complex patterns of genetic vari-
ation involve trade-offs across environments (TPCs) or
across ages (GCs). It is possible that trade-offs across en-
vironments are more common or important for perfor-
mance curves and continuous reaction norms compared
with life-history trade-offs across ages. Given that larger
size is often selectively favored in many systems and ages
(Kingsolver and Pfennig 2004), it is perhaps surprising that
most of the standing genetic variance in GCs is in overall
size, as we would expect consistent directional selection to
reduce genetic variation in size. However, patterns of selec-
tion on size may also depend on environmental conditions:
genotypes with larger sizes in one environment may be rel-
atively smaller in other environmental conditions. In this
case, heterogeneity in environmental conditions could gen-
erate variable selection and maintain genetic variation in
size (Roff 2002). In addition, size and rates of growth and de-
velopment can be genetically correlated with other fitness-
related traits, including mortality (Mangel and Stamps
2001; Biro et al. 2004; Reinbold et al. 2009). Such genetic cor-
relations can constrain the evolution of size and maintain
substantial genetic variation in size within populations.
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